Cargando…
Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the cla...
Autores principales: | Cheng, Jie-Zhi, Ni, Dong, Chou, Yi-Hong, Qin, Jing, Tiu, Chui-Mei, Chang, Yeun-Chung, Huang, Chiun-Sheng, Shen, Dinggang, Chen, Chung-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832199/ https://www.ncbi.nlm.nih.gov/pubmed/27079888 http://dx.doi.org/10.1038/srep24454 |
Ejemplares similares
-
Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans
por: Mu, Junhao, et al.
Publicado: (2023) -
A classification of pulmonary nodules by CT scan
por: Bellomi, M
Publicado: (2012) -
Anatomy packing with hierarchical segments: an algorithm for segmentation of pulmonary nodules in CT images
por: Tsou, Chi-Hsuan, et al.
Publicado: (2015) -
Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans
por: Hendrix, Ward, et al.
Publicado: (2023) -
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
por: Alshazly, Hammam, et al.
Publicado: (2021)