Cargando…
Timing by rhythms: Daily clocks and developmental rulers
Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832293/ https://www.ncbi.nlm.nih.gov/pubmed/26542934 http://dx.doi.org/10.1111/dgd.12242 |
_version_ | 1782427228458450944 |
---|---|
author | Webb, Alexis B. Oates, Andrew C. |
author_facet | Webb, Alexis B. Oates, Andrew C. |
author_sort | Webb, Alexis B. |
collection | PubMed |
description | Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrates the daily sleep/wake cycle of organisms. Temporal rhythms can also be used for spatial organization, if information from an oscillating system can be recorded within the tissue in a manner that leaves a permanent periodic pattern. One example of this is the “segmentation clock” used by the vertebrate embryo to rhythmically and sequentially subdivide its elongating body axis. The segmentation clock moves with the elongation of the embryo, such that its period sets the segment length as the tissue grows outward. Although the study of this system is still relatively young compared to the circadian clock, outlines of molecular, cellular, and tissue‐level regulatory mechanisms of timing have emerged. The question remains, however, is it truly a clock? Here we seek to introduce the segmentation clock to a wider audience of chronobiologists, focusing on the role and control of timing in the system. We compare and contrast the segmentation clock with the circadian clock, and propose that the segmentation clock is actually an oscillatory ruler, with a primary function to measure embryonic space. |
format | Online Article Text |
id | pubmed-4832293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48322932016-04-20 Timing by rhythms: Daily clocks and developmental rulers Webb, Alexis B. Oates, Andrew C. Dev Growth Differ Review Articles Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrates the daily sleep/wake cycle of organisms. Temporal rhythms can also be used for spatial organization, if information from an oscillating system can be recorded within the tissue in a manner that leaves a permanent periodic pattern. One example of this is the “segmentation clock” used by the vertebrate embryo to rhythmically and sequentially subdivide its elongating body axis. The segmentation clock moves with the elongation of the embryo, such that its period sets the segment length as the tissue grows outward. Although the study of this system is still relatively young compared to the circadian clock, outlines of molecular, cellular, and tissue‐level regulatory mechanisms of timing have emerged. The question remains, however, is it truly a clock? Here we seek to introduce the segmentation clock to a wider audience of chronobiologists, focusing on the role and control of timing in the system. We compare and contrast the segmentation clock with the circadian clock, and propose that the segmentation clock is actually an oscillatory ruler, with a primary function to measure embryonic space. John Wiley and Sons Inc. 2015-11-06 2016-01 /pmc/articles/PMC4832293/ /pubmed/26542934 http://dx.doi.org/10.1111/dgd.12242 Text en © 2015 The Authors Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Articles Webb, Alexis B. Oates, Andrew C. Timing by rhythms: Daily clocks and developmental rulers |
title | Timing by rhythms: Daily clocks and developmental rulers |
title_full | Timing by rhythms: Daily clocks and developmental rulers |
title_fullStr | Timing by rhythms: Daily clocks and developmental rulers |
title_full_unstemmed | Timing by rhythms: Daily clocks and developmental rulers |
title_short | Timing by rhythms: Daily clocks and developmental rulers |
title_sort | timing by rhythms: daily clocks and developmental rulers |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832293/ https://www.ncbi.nlm.nih.gov/pubmed/26542934 http://dx.doi.org/10.1111/dgd.12242 |
work_keys_str_mv | AT webbalexisb timingbyrhythmsdailyclocksanddevelopmentalrulers AT oatesandrewc timingbyrhythmsdailyclocksanddevelopmentalrulers |