Cargando…

Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons

N‐Methyl‐d‐aspartate glutamate receptors (NMDARs) contribute to neural development, plasticity and survival, but they are also linked with neurodegeneration. NMDARs at synapses are activated by coincident glutamate release and depolarization. NMDARs distal to synapses can sometimes be recruited by ‘...

Descripción completa

Detalles Bibliográficos
Autores principales: Wild, A. R., Bollands, M., Morris, P. G., Jones, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832385/
https://www.ncbi.nlm.nih.gov/pubmed/26370007
http://dx.doi.org/10.1111/ejn.13075
_version_ 1782427249031512064
author Wild, A. R.
Bollands, M.
Morris, P. G.
Jones, S.
author_facet Wild, A. R.
Bollands, M.
Morris, P. G.
Jones, S.
author_sort Wild, A. R.
collection PubMed
description N‐Methyl‐d‐aspartate glutamate receptors (NMDARs) contribute to neural development, plasticity and survival, but they are also linked with neurodegeneration. NMDARs at synapses are activated by coincident glutamate release and depolarization. NMDARs distal to synapses can sometimes be recruited by ‘spill‐over’ of glutamate during high‐frequency synaptic stimulation or when glutamate uptake is compromised, and this influences the shape of NMDAR‐mediated postsynaptic responses. In substantia nigra dopamine neurons, activation of NMDARs beyond the synapse during different frequencies of presynaptic stimulation has not been explored, even though excitatory afferents from the subthalamic nucleus show a range of firing frequencies, and these frequencies change in human and experimental Parkinson's disease. This study reports that high‐frequency stimulation (80 Hz/200 ms) evoked NMDAR‐excitatory postsynaptic currents (EPSCs) that were larger and longer lasting than those evoked by single stimuli at low frequency (0.1 Hz). MK‐801, which irreversibly blocked NMDAR‐EPSCs activated during 0.1‐Hz stimulation, left a proportion of NMDAR‐EPSCs that could be activated by 80‐Hz stimulation and that may represent activity of NMDARs distal to synapses. TBOA, which blocks glutamate transporters, significantly increased NMDAR‐EPSCs in response to 80‐Hz stimulation, particularly when metabotropic glutamate receptors (mGluRs) were also blocked, indicating that recruitment of NMDARs distal to synapses is regulated by glutamate transporters and mGluRs. These regulatory mechanisms may be essential in the substantia nigra for restricting glutamate diffusion from synaptic sites and keeping NMDAR‐EPSCs in dopamine neurons relatively small and fast. Failure of glutamate transporters may contribute to the declining health of dopamine neurons during pathological conditions.
format Online
Article
Text
id pubmed-4832385
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-48323852016-04-20 Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons Wild, A. R. Bollands, M. Morris, P. G. Jones, S. Eur J Neurosci Molecular and Synaptic Mechanisms N‐Methyl‐d‐aspartate glutamate receptors (NMDARs) contribute to neural development, plasticity and survival, but they are also linked with neurodegeneration. NMDARs at synapses are activated by coincident glutamate release and depolarization. NMDARs distal to synapses can sometimes be recruited by ‘spill‐over’ of glutamate during high‐frequency synaptic stimulation or when glutamate uptake is compromised, and this influences the shape of NMDAR‐mediated postsynaptic responses. In substantia nigra dopamine neurons, activation of NMDARs beyond the synapse during different frequencies of presynaptic stimulation has not been explored, even though excitatory afferents from the subthalamic nucleus show a range of firing frequencies, and these frequencies change in human and experimental Parkinson's disease. This study reports that high‐frequency stimulation (80 Hz/200 ms) evoked NMDAR‐excitatory postsynaptic currents (EPSCs) that were larger and longer lasting than those evoked by single stimuli at low frequency (0.1 Hz). MK‐801, which irreversibly blocked NMDAR‐EPSCs activated during 0.1‐Hz stimulation, left a proportion of NMDAR‐EPSCs that could be activated by 80‐Hz stimulation and that may represent activity of NMDARs distal to synapses. TBOA, which blocks glutamate transporters, significantly increased NMDAR‐EPSCs in response to 80‐Hz stimulation, particularly when metabotropic glutamate receptors (mGluRs) were also blocked, indicating that recruitment of NMDARs distal to synapses is regulated by glutamate transporters and mGluRs. These regulatory mechanisms may be essential in the substantia nigra for restricting glutamate diffusion from synaptic sites and keeping NMDAR‐EPSCs in dopamine neurons relatively small and fast. Failure of glutamate transporters may contribute to the declining health of dopamine neurons during pathological conditions. John Wiley and Sons Inc. 2015-10-20 2015-11 /pmc/articles/PMC4832385/ /pubmed/26370007 http://dx.doi.org/10.1111/ejn.13075 Text en © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Molecular and Synaptic Mechanisms
Wild, A. R.
Bollands, M.
Morris, P. G.
Jones, S.
Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons
title Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons
title_full Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons
title_fullStr Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons
title_full_unstemmed Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons
title_short Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons
title_sort mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic nmda receptors in mouse substantia nigra dopaminergic neurons
topic Molecular and Synaptic Mechanisms
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832385/
https://www.ncbi.nlm.nih.gov/pubmed/26370007
http://dx.doi.org/10.1111/ejn.13075
work_keys_str_mv AT wildar mechanismsregulatingspilloverofsynapticglutamatetoextrasynapticnmdareceptorsinmousesubstantianigradopaminergicneurons
AT bollandsm mechanismsregulatingspilloverofsynapticglutamatetoextrasynapticnmdareceptorsinmousesubstantianigradopaminergicneurons
AT morrispg mechanismsregulatingspilloverofsynapticglutamatetoextrasynapticnmdareceptorsinmousesubstantianigradopaminergicneurons
AT joness mechanismsregulatingspilloverofsynapticglutamatetoextrasynapticnmdareceptorsinmousesubstantianigradopaminergicneurons