Cargando…
OncoNEM: inferring tumor evolution from single-cell sequencing data
Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for infer...
Autores principales: | Ross, Edith M., Markowetz, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832472/ https://www.ncbi.nlm.nih.gov/pubmed/27083415 http://dx.doi.org/10.1186/s13059-016-0929-9 |
Ejemplares similares
-
SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models
por: Zafar, Hamim, et al.
Publicado: (2017) -
SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
por: Kang, Senbai, et al.
Publicado: (2022) -
Tree inference for single-cell data
por: Jahn, Katharina, et al.
Publicado: (2016) -
SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data
por: Zafar, Hamim, et al.
Publicado: (2019) -
THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
por: Oesper, Layla, et al.
Publicado: (2013)