Cargando…
p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablat...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834033/ https://www.ncbi.nlm.nih.gov/pubmed/26947973 http://dx.doi.org/10.1016/j.stemcr.2016.02.001 |
_version_ | 1782427434703912960 |
---|---|
author | Cong, Qian Jia, Hao Biswas, Soma Li, Ping Qiu, Shoutao Deng, Qi Guo, Xizhi Ma, Gang Ling Chau, Jenny Fang Wang, Yibin Zhang, Zhen-Lin Jiang, Xinquan Liu, Huijuan Li, Baojie |
author_facet | Cong, Qian Jia, Hao Biswas, Soma Li, Ping Qiu, Shoutao Deng, Qi Guo, Xizhi Ma, Gang Ling Chau, Jenny Fang Wang, Yibin Zhang, Zhen-Lin Jiang, Xinquan Liu, Huijuan Li, Baojie |
author_sort | Cong, Qian |
collection | PubMed |
description | Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablation of p38α in Prx1+ BM-MSCs produced osteoporotic phenotypes, growth plate defects, and increased bone marrow fat, secondary to biased BM-MSC differentiation from osteoblast/chondrocyte to adipocyte and increased osteoclastogenesis and bone resorption. p38α regulates BM-MSC osteogenic commitment through TAK1-NF-κB signaling and osteoclastogenesis through osteoprotegerin (OPG) production by BM-MSCs. Estrogen activates p38α to maintain OPG expression in BM-MSCs to preserve the bone. Ablation of p38α in BM-MSCs positive for Dermo1, a later BM-MSC marker, only affected osteogenic differentiation. Thus, p38α mitogen-activated protein kinase (MAPK) in Prx1+ BM-MSCs acts to preserve the bone by promoting osteogenic lineage commitment and sustaining OPG production. This study thus unravels previously unidentified roles for p38α MAPK in skeletal development and bone remodeling. |
format | Online Article Text |
id | pubmed-4834033 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-48340332016-04-27 p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions Cong, Qian Jia, Hao Biswas, Soma Li, Ping Qiu, Shoutao Deng, Qi Guo, Xizhi Ma, Gang Ling Chau, Jenny Fang Wang, Yibin Zhang, Zhen-Lin Jiang, Xinquan Liu, Huijuan Li, Baojie Stem Cell Reports Article Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablation of p38α in Prx1+ BM-MSCs produced osteoporotic phenotypes, growth plate defects, and increased bone marrow fat, secondary to biased BM-MSC differentiation from osteoblast/chondrocyte to adipocyte and increased osteoclastogenesis and bone resorption. p38α regulates BM-MSC osteogenic commitment through TAK1-NF-κB signaling and osteoclastogenesis through osteoprotegerin (OPG) production by BM-MSCs. Estrogen activates p38α to maintain OPG expression in BM-MSCs to preserve the bone. Ablation of p38α in BM-MSCs positive for Dermo1, a later BM-MSC marker, only affected osteogenic differentiation. Thus, p38α mitogen-activated protein kinase (MAPK) in Prx1+ BM-MSCs acts to preserve the bone by promoting osteogenic lineage commitment and sustaining OPG production. This study thus unravels previously unidentified roles for p38α MAPK in skeletal development and bone remodeling. Elsevier 2016-03-03 /pmc/articles/PMC4834033/ /pubmed/26947973 http://dx.doi.org/10.1016/j.stemcr.2016.02.001 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Cong, Qian Jia, Hao Biswas, Soma Li, Ping Qiu, Shoutao Deng, Qi Guo, Xizhi Ma, Gang Ling Chau, Jenny Fang Wang, Yibin Zhang, Zhen-Lin Jiang, Xinquan Liu, Huijuan Li, Baojie p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions |
title | p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions |
title_full | p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions |
title_fullStr | p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions |
title_full_unstemmed | p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions |
title_short | p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions |
title_sort | p38α mapk regulates lineage commitment and opg synthesis of bone marrow stromal cells to prevent bone loss under physiological and pathological conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834033/ https://www.ncbi.nlm.nih.gov/pubmed/26947973 http://dx.doi.org/10.1016/j.stemcr.2016.02.001 |
work_keys_str_mv | AT congqian p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT jiahao p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT biswassoma p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT liping p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT qiushoutao p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT dengqi p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT guoxizhi p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT magang p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT lingchaujennyfang p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT wangyibin p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT zhangzhenlin p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT jiangxinquan p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT liuhuijuan p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions AT libaojie p38amapkregulateslineagecommitmentandopgsynthesisofbonemarrowstromalcellstopreventbonelossunderphysiologicalandpathologicalconditions |