Cargando…
t(4) report(): Supporting Read-Across Using Biological Data
Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this...
Autores principales: | Zhu, Hao, Bouhifd, Mounir, Kleinstreuer, Nicole, Kroese, E. Dinant, Liu, Zhichao, Luechtefeld, Thomas, Pamies, David, Shen, Jie, Strauss, Volker, Wu, Shengde, Hartung, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834201/ https://www.ncbi.nlm.nih.gov/pubmed/26863516 http://dx.doi.org/10.14573/altex.1601252 |
Ejemplares similares
-
t(4) report: Toward Good Read-Across Practice (GRAP) Guidance
por: Ball, Nicholas, et al.
Publicado: (2016) -
Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility
por: Luechtefeld, Thomas, et al.
Publicado: (2018) -
Computational Approaches to Chemical Hazard Assessment
por: Luechtefeld, Thomas, et al.
Publicado: (2017) -
3S – Systematic, Systemic, and Systems Biology and Toxicology
por: Smirnova, Lena, et al.
Publicado: (2018) -
Refine and
Strengthen SAR-Based Read-Across by Considering
Bioactivation and Modes of Action
por: Yan, Gang, et al.
Publicado: (2023)