Cargando…
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
Medicinal chemistry patents contain rich information about chemical compounds. Although much effort has been devoted to extracting chemical entities from scientific literature, limited numbers of patent mining systems are publically available, probably due to the lack of large manually annotated cor...
Autores principales: | Zhang, Yaoyun, Xu, Jun, Chen, Hui, Wang, Jingqi, Wu, Yonghui, Prakasam, Manu, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834204/ https://www.ncbi.nlm.nih.gov/pubmed/27087307 http://dx.doi.org/10.1093/database/baw049 |
Ejemplares similares
-
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015) -
A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
por: Tang, Buzhou, et al.
Publicado: (2015) -
ChEMU: Named Entity Recognition and Event Extraction of Chemical Reactions from Patents
por: Nguyen, Dat Quoc, et al.
Publicado: (2020) -
Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics
por: Batista-Navarro, Riza, et al.
Publicado: (2015) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014)