Cargando…

Potential Antioxidant Activity of New Tetracyclic and Pentacyclic Nonlinear Phenothiazine Derivatives

The global increase in oxidative stress related diseases such as cancer, cardiovascular, and inflammatory diseases caused by overwhelming level of free radicals in the body has encouraged the search for new antioxidant agents. Based on the ability of newly synthesized phenothiazine derivatives (6-ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Engwa, Godwill Azeh, Ayuk, Eugene Lekem, Igbojekwe, Benardeth Ujunwa, Unaegbu, Marcellus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834405/
https://www.ncbi.nlm.nih.gov/pubmed/27127652
http://dx.doi.org/10.1155/2016/9896575
Descripción
Sumario:The global increase in oxidative stress related diseases such as cancer, cardiovascular, and inflammatory diseases caused by overwhelming level of free radicals in the body has encouraged the search for new antioxidant agents. Based on the ability of newly synthesized phenothiazine derivatives (6-chloro-11-azabenzo[a]phenothiazine-5-one and 6-[4-bromophenyl]-10-methyl-11-azabenzo[a]phenothiazine-5-one) to oxidize H(2)O(2), a known free radical to sulfoxide, this study assessed the in vitro and in vivo antioxidant activity. The synthesized phenothiazine derivatives exhibited reducing power potential to convert Fe(3+) to Fe(2+) and high ability to scavenge H(2)O(2) free radical in vitro. These activities were comparable to ascorbic acid, a standard antioxidant. The catalase activity significantly increased (p < 0.05) in groups 1 and 2 animals that received the phenothiazine derivatives compared to the controls (groups 3 and 4) suggesting the ability of the phenothiazine derivatives to scavenge H(2)O(2) in vivo. The malondialdehyde level in groups 1 and 2 animals was lower than that in group 3 that received the reference compound (ascorbic acid) and group 4 that received the solvent suggesting the ability of the phenothiazine derivatives to prevent lipid membrane damage. AST and bilirubin levels were higher in group 2 animals which received 6-[4-bromophenyl]-10-methyl-11-azabenzo[a]phenothiazine-5-one compared to group 3, the positive control. The results suggest that phenothiazine derivatives, especially 6-chloro-11-azabenzo[a]phenothiazine-5-one, possess antioxidant activity though 6-[4-bromophenyl]-10-methyl-11-azabenzo[a]phenothiazine-5-one was slightly toxic. This activity may be due to the presence of electron donors such as sulfur as well as the richness of hydrogen in the additional benzene rings for substitution. Further study is needed to identify tolerable doses for possible therapeutic purposes.