Cargando…
Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression
Standard functional magnetic resonance imaging (fMRI) analyses cannot assess the potential of a neuroimaging signature as a biomarker to predict individual vulnerability to major depression (MD). Here, we use machine learning for the first time to address this question. Using a recently identified n...
Autores principales: | Sato, João R., Moll, Jorge, Green, Sophie, Deakin, John F.W., Thomaz, Carlos E., Zahn, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834459/ https://www.ncbi.nlm.nih.gov/pubmed/26187550 http://dx.doi.org/10.1016/j.pscychresns.2015.07.001 |
Ejemplares similares
-
Voluntary Enhancement of Neural Signatures of Affiliative Emotion Using fMRI Neurofeedback
por: Moll, Jorge, et al.
Publicado: (2014) -
Blame-rebalance fMRI neurofeedback in major depressive disorder: A randomised proof-of-concept trial
por: Zahn, Roland, et al.
Publicado: (2019) -
Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox
por: Sato, João R., et al.
Publicado: (2013) -
Increased Amygdala Response to Shame in Remitted Major Depressive Disorder
por: Pulcu, Erdem, et al.
Publicado: (2014) -
The neural basis of conceptual–emotional integration and its role in major depressive disorder
por: Green, Sophie, et al.
Publicado: (2013)