Cargando…

Microscopic observation of dye molecules for solar cells on a titania surface

The lateral distribution and coverage of Ru-based dye molecules, which are used for dye-sensitized solar cells (DSCs), were directly examined on a titania surface using high-resolution scanning transmission electron microscopy (STEM). The clean surface of a free-standing titania nanosheet was first...

Descripción completa

Detalles Bibliográficos
Autores principales: Koshiya, Shogo, Yamashita, Shunsuke, Kimoto, Koji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834531/
https://www.ncbi.nlm.nih.gov/pubmed/27087005
http://dx.doi.org/10.1038/srep24616
Descripción
Sumario:The lateral distribution and coverage of Ru-based dye molecules, which are used for dye-sensitized solar cells (DSCs), were directly examined on a titania surface using high-resolution scanning transmission electron microscopy (STEM). The clean surface of a free-standing titania nanosheet was first confirmed with atomic resolution, and then, the nanosheet was used as a substrate. A single dye molecule on the titania nanosheet was visualized for the first time. The quantitative STEM images revealed an inhomogeneous dye-molecule distribution at the early stage of its absorption, i.e., the aggregation of the dye molecules. The majority of the titania surface was not covered by dye molecules, suggesting that optimization of the dye molecule distribution could yield further improvement of the DSC conversion efficiencies.