Cargando…
Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells
Nanoparticles are being increasingly used in the field of cancer treatment due to their unique properties and advantages. The aim of the present research work was to prepare and characterize a polymeric albumin nanosystem for Cisplatin and evaluate its in-vitro efficacy against B16F10 melanoma. The...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834695/ https://www.ncbi.nlm.nih.gov/pubmed/27134534 http://dx.doi.org/10.1016/j.jsps.2014.08.004 |
_version_ | 1782427529628352512 |
---|---|
author | Shrikhande, Shruti S. Jain, Darshana S. Athawale, Rajani B. Bajaj, Amrita N. Goel, Peeyush Kamran, Zahid Nikam, Yuvraj Gude, Rajiv |
author_facet | Shrikhande, Shruti S. Jain, Darshana S. Athawale, Rajani B. Bajaj, Amrita N. Goel, Peeyush Kamran, Zahid Nikam, Yuvraj Gude, Rajiv |
author_sort | Shrikhande, Shruti S. |
collection | PubMed |
description | Nanoparticles are being increasingly used in the field of cancer treatment due to their unique properties and advantages. The aim of the present research work was to prepare and characterize a polymeric albumin nanosystem for Cisplatin and evaluate its in-vitro efficacy against B16F10 melanoma. The developed nanoparticles were almost spherical in shape with a particle size in the range of 150–300 nm, low polydispersity values and about 80% drug entrapment efficiency. Albumin nanocarriers sustained the release of Cisplatin for more than 48 h, suggesting the reduction in dosing schedule for this drug. The results from in-vitro cell line studies indicated the dose dependent cytotoxic potential of drug loaded albumin nanoparticles, their potential to inhibit cell proliferation and induce morphological changes. In addition, these nanoparticles exhibited superiority to Cisplatin in hampering the cell migration. Developed nanoparticles caused cell cycle arrest along with time and concentration dependent cellular uptake in B16F10 cell line. These results signify that the prepared Cisplatin albumin nanoparticles could serve as a promising approach for B16F10 melanoma treatment. |
format | Online Article Text |
id | pubmed-4834695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-48346952016-04-29 Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells Shrikhande, Shruti S. Jain, Darshana S. Athawale, Rajani B. Bajaj, Amrita N. Goel, Peeyush Kamran, Zahid Nikam, Yuvraj Gude, Rajiv Saudi Pharm J Original Article Nanoparticles are being increasingly used in the field of cancer treatment due to their unique properties and advantages. The aim of the present research work was to prepare and characterize a polymeric albumin nanosystem for Cisplatin and evaluate its in-vitro efficacy against B16F10 melanoma. The developed nanoparticles were almost spherical in shape with a particle size in the range of 150–300 nm, low polydispersity values and about 80% drug entrapment efficiency. Albumin nanocarriers sustained the release of Cisplatin for more than 48 h, suggesting the reduction in dosing schedule for this drug. The results from in-vitro cell line studies indicated the dose dependent cytotoxic potential of drug loaded albumin nanoparticles, their potential to inhibit cell proliferation and induce morphological changes. In addition, these nanoparticles exhibited superiority to Cisplatin in hampering the cell migration. Developed nanoparticles caused cell cycle arrest along with time and concentration dependent cellular uptake in B16F10 cell line. These results signify that the prepared Cisplatin albumin nanoparticles could serve as a promising approach for B16F10 melanoma treatment. Elsevier 2015-09 2015-01-06 /pmc/articles/PMC4834695/ /pubmed/27134534 http://dx.doi.org/10.1016/j.jsps.2014.08.004 Text en © 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Shrikhande, Shruti S. Jain, Darshana S. Athawale, Rajani B. Bajaj, Amrita N. Goel, Peeyush Kamran, Zahid Nikam, Yuvraj Gude, Rajiv Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells |
title | Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells |
title_full | Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells |
title_fullStr | Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells |
title_full_unstemmed | Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells |
title_short | Evaluation of anti-metastatic potential of Cisplatin polymeric nanocarriers on B16F10 melanoma cells |
title_sort | evaluation of anti-metastatic potential of cisplatin polymeric nanocarriers on b16f10 melanoma cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834695/ https://www.ncbi.nlm.nih.gov/pubmed/27134534 http://dx.doi.org/10.1016/j.jsps.2014.08.004 |
work_keys_str_mv | AT shrikhandeshrutis evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT jaindarshanas evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT athawalerajanib evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT bajajamritan evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT goelpeeyush evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT kamranzahid evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT nikamyuvraj evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells AT guderajiv evaluationofantimetastaticpotentialofcisplatinpolymericnanocarriersonb16f10melanomacells |