Cargando…

Right Ventricular Anatomy Can Accommodate Multiple Micra Transcatheter Pacemakers

BACKGROUND: The introduction of transcatheter pacemaker technology has the potential to significantly reduce if not eliminate a number of complications associated with a traditional leaded pacing system. However, this technology raises new questions regarding how to manage the device at end of servi...

Descripción completa

Detalles Bibliográficos
Autores principales: OMDAHL, PAMELA, EGGEN, MICHAEL D., BONNER, MATTHEW D., IAIZZO, PAUL A., WIKA, KENT
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834726/
https://www.ncbi.nlm.nih.gov/pubmed/26710918
http://dx.doi.org/10.1111/pace.12804
Descripción
Sumario:BACKGROUND: The introduction of transcatheter pacemaker technology has the potential to significantly reduce if not eliminate a number of complications associated with a traditional leaded pacing system. However, this technology raises new questions regarding how to manage the device at end of service, the number of devices the right ventricle (RV) can accommodate, and what patient age is appropriate for this therapy. In this study, six human cadaver hearts and one reanimated human heart (not deemed viable for transplant) were each implanted with three Micra devices in traditional pacing locations via fluoroscopic imaging. METHODS: A total of six human cadaver hearts were obtained from the University of Minnesota Anatomy Bequest Program; the seventh heart was a heart not deemed viable for transplant obtained from LifeSource and then reanimated using Visible Heart® methodologies. Each heart was implanted with multiple Micras using imaging and proper delivery tools; in these, the right ventricular volumes were measured and recorded. The hearts were subsequently dissected to view the right ventricular anatomies and the positions and spacing between devices. RESULTS: Multiple Micra devices could be placed in each heart in traditional, clinically accepted pacing implant locations within the RV and in each case without physical device interactions. This was true even in a human heart considered to be relatively small. CONCLUSIONS: Although this technology is new, it was demonstrated here that within the human heart's RV, three Micra devices could be accommodated within traditional pacing locations: with the potential in some, for even more.