Cargando…

ZnO@CdS Core-Shell Heterostructures: Fabrication, Enhanced Photocatalytic, and Photoelectrochemical Performance

ZnO nanorods and ZnO@CdS heterostructures have been fabricated on carbon fiber cloth substrates via hydrothermal and electrochemical deposition. Their photocatalytic properties were investigated by measuring the degradation of methylene blue under ultraviolet light irradiation. The result illustrate...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Meng, Yao, Nannan, Wang, Chenggang, Huang, Jinzhao, Shao, Minghui, Zhang, Shouwei, Li, Ping, Deng, Xiaolong, Xu, Xijin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835407/
https://www.ncbi.nlm.nih.gov/pubmed/27090656
http://dx.doi.org/10.1186/s11671-016-1432-7
Descripción
Sumario:ZnO nanorods and ZnO@CdS heterostructures have been fabricated on carbon fiber cloth substrates via hydrothermal and electrochemical deposition. Their photocatalytic properties were investigated by measuring the degradation of methylene blue under ultraviolet light irradiation. The result illustrated that the photodegradation efficiency of ZnO@CdS heterostructures was better than that of pure ZnO nanorods, in which the rate constants were about 0.04629 and 0.02617 min(−1). Furthermore, the photocurrent of ZnO@CdS heterostructures achieved 10(2) times enhancement than pure ZnO nanorods, indicating that more free carriers could be generated and transferred in ZnO@CdS heterostructures, which could be responsible for the increased photocatalytic performance.