Cargando…
Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings
Material‐independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene‐based fungal melanin mimetic, which exhibit a catechol‐free structure, can...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835569/ https://www.ncbi.nlm.nih.gov/pubmed/26833568 http://dx.doi.org/10.1111/1751-7915.12347 |
_version_ | 1782427629590151168 |
---|---|
author | Jeon, Jong‐Rok Le, Thao Thanh Chang, Yoon‐Seok |
author_facet | Jeon, Jong‐Rok Le, Thao Thanh Chang, Yoon‐Seok |
author_sort | Jeon, Jong‐Rok |
collection | PubMed |
description | Material‐independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene‐based fungal melanin mimetic, which exhibit a catechol‐free structure, can act as a coating agent for material‐independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7‐dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared‐attenuated total reflectance and X‐ray photoelectron spectroscopy, bactericidal action, charge‐dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C‐O coupling and C‐C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7‐DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin‐like polymerization could be used to co‐immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7‐DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7‐DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7‐DHN) illuminate its potential applications as bactericidal, radical‐scavenging and pollutant‐sorbing agents. |
format | Online Article Text |
id | pubmed-4835569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48355692016-04-27 Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings Jeon, Jong‐Rok Le, Thao Thanh Chang, Yoon‐Seok Microb Biotechnol Research Articles Material‐independent adhesive action derived from polycatechol structures has been intensively studied due to its high applicability in surface engineering. Here, we for the first time demonstrate that a dihydroxynaphthalene‐based fungal melanin mimetic, which exhibit a catechol‐free structure, can act as a coating agent for material‐independent surface modifications on the nanoscale. This mimetic was made by using laccase to catalyse the oxidative polymerization of specifically 2,7‐dihydroxynaphthalene. Analyses of the product of this reaction, using Fourier transform infrared‐attenuated total reflectance and X‐ray photoelectron spectroscopy, bactericidal action, charge‐dependent sorption behaviour, phenol content, Zeta potential measurements and free radical scavenging activity, yielded results consistent with it containing hydroxyphenyl groups. Moreover, nuclear magnetic resonance analyses of the product revealed that C‐O coupling and C‐C coupling were the main mechanisms for its synthesis, thus clearly excluding a catechol structure in the polymerization. This product, termed poly(2,7‐DHN), was successfully deposited onto a wide variety of solid surfaces, including metals, polymeric materials, ceramics, biosurfaces and mineral complexes. The melanin‐like polymerization could be used to co‐immobilize other organic molecules, forming functional surfaces. In addition, the hydroxyphenyl group contained in the coated poly(2,7‐DHN) induced secondary metal chelation/reduction and adhesion with proteins, suggesting the potential of this poly(2,7‐DHN) layer to serve as a platform material for a variety of surface engineering applications. Moreover, the novel physicochemical properties of the poly(2,7‐DHN) illuminate its potential applications as bactericidal, radical‐scavenging and pollutant‐sorbing agents. John Wiley and Sons Inc. 2016-02-02 /pmc/articles/PMC4835569/ /pubmed/26833568 http://dx.doi.org/10.1111/1751-7915.12347 Text en © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Jeon, Jong‐Rok Le, Thao Thanh Chang, Yoon‐Seok Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
title | Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
title_full | Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
title_fullStr | Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
title_full_unstemmed | Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
title_short | Dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
title_sort | dihydroxynaphthalene‐based mimicry of fungal melanogenesis for multifunctional coatings |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835569/ https://www.ncbi.nlm.nih.gov/pubmed/26833568 http://dx.doi.org/10.1111/1751-7915.12347 |
work_keys_str_mv | AT jeonjongrok dihydroxynaphthalenebasedmimicryoffungalmelanogenesisformultifunctionalcoatings AT lethaothanh dihydroxynaphthalenebasedmimicryoffungalmelanogenesisformultifunctionalcoatings AT changyoonseok dihydroxynaphthalenebasedmimicryoffungalmelanogenesisformultifunctionalcoatings |