Cargando…

N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrol...

Descripción completa

Detalles Bibliográficos
Autores principales: Dutta, Dipak, Nagapradeep, N., Zhu, Haijin, Forsyth, Maria, Verma, Sandeep, Bhattacharyya, Aninda J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835778/
https://www.ncbi.nlm.nih.gov/pubmed/27091631
http://dx.doi.org/10.1038/srep24499
Descripción
Sumario:Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li(+)-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10(−7) to 10(−3) Ω(−1) cm(−1)) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li(+) and H(+) (<100 °C) to a pure Li(+) conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries.