Cargando…
Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis
OBJECTIVE: Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melaton...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Faculdade De Odontologia De Bauru - USP
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836923/ https://www.ncbi.nlm.nih.gov/pubmed/27119764 http://dx.doi.org/10.1590/1678-775720150606 |
_version_ | 1782427786229579776 |
---|---|
author | RAHMAN, Mohammad Zeshaan SHIGEISHI, Hideo SASAKI, Kazuki OTA, Akira OHTA, Kouji TAKECHI, Masaaki |
author_facet | RAHMAN, Mohammad Zeshaan SHIGEISHI, Hideo SASAKI, Kazuki OTA, Akira OHTA, Kouji TAKECHI, Masaaki |
author_sort | RAHMAN, Mohammad Zeshaan |
collection | PubMed |
description | OBJECTIVE: Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melatonin (MEL) and basic fibroblast growth factor (FGF-2) have been independently reported to induce osteoblastic activity. The present in vitro study was undertaken to examine the relationship between these two bioactive agents and their combinatory effects on osteoblastic activity and mineralization in vitro. MATERIAL AND METHODS: Mouse preosteoblast cells (MC3T3-E1) were seeded and cultured within cylindrical type of IP-CHA block (ø 4x7 mm) by vacuum-assisted method. The IP-CHA/MC3T3 composites were subjected to FGF-2 and/or MEL. The proliferation assay, alkaline phosphatase enzyme activity (ALP), mRNA expressions of late bone markers, namely Osteocalcin (OCN) and Osteopontin (OPN), and Alizarin Red staining were examined over a period of 7 days. RESULTS: FGF-2 mainly enhanced the proliferation of MC3T3-E1 cells within the IP-CHA constructs. MEL mainly induced the mRNA expression of late bone markers (OCN and OPN) and showed increased ALP activity of MC3T3 cells cultured within IP-CHA construct. Moreover, the combination of FGF-2 and MEL showed increased osteogenic activity within the IP-CHA construct in terms of cell proliferation, upregulated expressions of OCN and OPN, increased ALP activity and mineralization with Alizarin Red. The synergy of the proliferative potential of FGF-2 and the differentiation potential of MEL showed increased osteogenic activity in MC3T3-E1 cells cultured within IP-CHA constructs. CONCLUSION: These findings indicate that the combination of FGF-2 and MEL may be utilized with biocompatible materials to attain augmented osteogenic activity and mineralization. |
format | Online Article Text |
id | pubmed-4836923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Faculdade De Odontologia De Bauru - USP |
record_format | MEDLINE/PubMed |
spelling | pubmed-48369232016-04-26 Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis RAHMAN, Mohammad Zeshaan SHIGEISHI, Hideo SASAKI, Kazuki OTA, Akira OHTA, Kouji TAKECHI, Masaaki J Appl Oral Sci Original Articles OBJECTIVE: Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melatonin (MEL) and basic fibroblast growth factor (FGF-2) have been independently reported to induce osteoblastic activity. The present in vitro study was undertaken to examine the relationship between these two bioactive agents and their combinatory effects on osteoblastic activity and mineralization in vitro. MATERIAL AND METHODS: Mouse preosteoblast cells (MC3T3-E1) were seeded and cultured within cylindrical type of IP-CHA block (ø 4x7 mm) by vacuum-assisted method. The IP-CHA/MC3T3 composites were subjected to FGF-2 and/or MEL. The proliferation assay, alkaline phosphatase enzyme activity (ALP), mRNA expressions of late bone markers, namely Osteocalcin (OCN) and Osteopontin (OPN), and Alizarin Red staining were examined over a period of 7 days. RESULTS: FGF-2 mainly enhanced the proliferation of MC3T3-E1 cells within the IP-CHA constructs. MEL mainly induced the mRNA expression of late bone markers (OCN and OPN) and showed increased ALP activity of MC3T3 cells cultured within IP-CHA construct. Moreover, the combination of FGF-2 and MEL showed increased osteogenic activity within the IP-CHA construct in terms of cell proliferation, upregulated expressions of OCN and OPN, increased ALP activity and mineralization with Alizarin Red. The synergy of the proliferative potential of FGF-2 and the differentiation potential of MEL showed increased osteogenic activity in MC3T3-E1 cells cultured within IP-CHA constructs. CONCLUSION: These findings indicate that the combination of FGF-2 and MEL may be utilized with biocompatible materials to attain augmented osteogenic activity and mineralization. Faculdade De Odontologia De Bauru - USP 2016 /pmc/articles/PMC4836923/ /pubmed/27119764 http://dx.doi.org/10.1590/1678-775720150606 Text en http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles RAHMAN, Mohammad Zeshaan SHIGEISHI, Hideo SASAKI, Kazuki OTA, Akira OHTA, Kouji TAKECHI, Masaaki Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
title | Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
title_full | Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
title_fullStr | Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
title_full_unstemmed | Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
title_short | Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
title_sort | combined effects of melatonin and fgf-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836923/ https://www.ncbi.nlm.nih.gov/pubmed/27119764 http://dx.doi.org/10.1590/1678-775720150606 |
work_keys_str_mv | AT rahmanmohammadzeshaan combinedeffectsofmelatoninandfgf2onmousepreosteoblastbehaviorwithininterconnectedporoushydroxyapatiteceramicsinvitroanalysis AT shigeishihideo combinedeffectsofmelatoninandfgf2onmousepreosteoblastbehaviorwithininterconnectedporoushydroxyapatiteceramicsinvitroanalysis AT sasakikazuki combinedeffectsofmelatoninandfgf2onmousepreosteoblastbehaviorwithininterconnectedporoushydroxyapatiteceramicsinvitroanalysis AT otaakira combinedeffectsofmelatoninandfgf2onmousepreosteoblastbehaviorwithininterconnectedporoushydroxyapatiteceramicsinvitroanalysis AT ohtakouji combinedeffectsofmelatoninandfgf2onmousepreosteoblastbehaviorwithininterconnectedporoushydroxyapatiteceramicsinvitroanalysis AT takechimasaaki combinedeffectsofmelatoninandfgf2onmousepreosteoblastbehaviorwithininterconnectedporoushydroxyapatiteceramicsinvitroanalysis |