Cargando…

Antagonism of Stem Cell Factor/c-kit Signaling Attenuates Neonatal Chronic Hypoxia-Induced Pulmonary Vascular Remodeling

BACKGROUND: Accumulating evidence suggests that c-kit positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/ c-kit regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, Karen C, Torres, Eneida, Hehre, Dorothy, Wu, Shu, Suguihara, Cleide, Hare, Joshua M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837030/
https://www.ncbi.nlm.nih.gov/pubmed/26705118
http://dx.doi.org/10.1038/pr.2015.275
Descripción
Sumario:BACKGROUND: Accumulating evidence suggests that c-kit positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/ c-kit regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the hypothesis that attenuated c-kit signaling would decrease chronic hypoxia-induced pulmonary vascular remodeling by decreasing pulmonary vascular cell mitogenesis. METHODS: Neonatal FVB/NJ mice treated with non-immune IgG (PL), or c-kit neutralizing antibody (ACK2) as well as c-kit mutant mice (WBB6F1- Kit W− v/ +) and their congenic controls, were exposed to normoxia (FiO2=0.21) or hypoxia (FiO2=0.12) for two weeks. Following this exposure, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), pulmonary vascular cell proliferation and remodeling were evaluated. RESULTS: As compared to chronically hypoxic controls, c-kit mutant mice had decreased RVSP, RVH, pulmonary vascular remodeling and proliferation. Consistent with these findings, administration of ACK2 to neonatal mice with chronic hypoxia-induced PH decreased RVSP, RVH, pulmonary vascular cell proliferation and remodeling. This attenuation in PH was accompanied by decreased extracellular signal-regulated protein kinase (ERK) 1/2 activation. CONCLUSION: SCF/c-kit signaling may potentiate chronic hypoxia-induced vascular remodeling by modulating ERK activation. Inhibition of c-kit activity may be a potential strategy to alleviate PH.