Cargando…
Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces
Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neu...
Autores principales: | Panzeri, Stefano, Safaai, Houman, De Feo, Vito, Vato, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837323/ https://www.ncbi.nlm.nih.gov/pubmed/27147955 http://dx.doi.org/10.3389/fnins.2016.00165 |
Ejemplares similares
-
State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats
por: De Feo, Vito, et al.
Publicado: (2017) -
State-dependent representation of stimulus-evoked activity in high-density recordings of neural cultures
por: Nieus, Thierry, et al.
Publicado: (2018) -
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder
por: Boi, Fabio, et al.
Publicado: (2016) -
A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions
por: Kira, Shinichiro, et al.
Publicado: (2023) -
A dynamical systems model of the effect of Locus Coeruleus firing on single trial cortical state dynamics
por: Safaai, Houman, et al.
Publicado: (2014)