Cargando…

Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage

Achromobacter xylosoxidans, an opportunistic pathogen, is responsible for various nosocomial and community-acquired infections. We isolated phiAxp-3, an N4-like bacteriophage that infects A. xylosoxidans, from hospital waste and studied its genomic and biological properties. Transmission electron mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yanyan, Li, Erna, Qi, Zhizhen, Li, Huan, Wei, Xiao, Lin, Weishi, Zhao, Ruixiang, Jiang, Aimin, Yang, Huiying, Yin, Zhe, Yuan, Jing, Zhao, Xiangna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837373/
https://www.ncbi.nlm.nih.gov/pubmed/27094846
http://dx.doi.org/10.1038/srep24776
Descripción
Sumario:Achromobacter xylosoxidans, an opportunistic pathogen, is responsible for various nosocomial and community-acquired infections. We isolated phiAxp-3, an N4-like bacteriophage that infects A. xylosoxidans, from hospital waste and studied its genomic and biological properties. Transmission electron microscopy revealed that, with a 67-nm diameter icosahedral head and a 20-nm non-contractile tail, phiAxp-3 has features characteristic of Podoviridae bacteriophages (order Caudovirales). With a burst size of 9000 plaque-forming units and a latent period of 80 min, phiAxp-3 had a host range limited to only four A. xylosoxidans strains of the 35 strains that were tested. The 72,825 bp phiAxp-3 DNA genome, with 416-bp terminal redundant ends, contains 80 predicted open reading frames, none of which are related to virulence or drug resistance. Genome sequence comparisons place phiAxp-3 more closely with JWAlpha and JWDelta Achromobacter phages than with other N4 viruses. Using proteomics, we identified 25 viral proteins from purified phiAxp-3 particles. Notably, investigation of the phage phiAxp-3 receptor on the surface of the host cell revealed that lipopolysaccharide serves as the receptor for the adsorption of phage phiAxp-3. Our findings advance current knowledge about A. xylosoxidans phages in an age where alternative therapies to combat antibiotic-resistant bacteria are urgently needed.