Cargando…
Time-dependent parameter of perfusion imaging as independent predictor of clinical outcome in symptomatic carotid artery stenosis
BACKGROUND: Carotid artery stenosis is a frequent cause of ischemic stroke. While any degree of stenosis can cause embolic stroke, a higher degree of stenosis can also cause hemodynamic infarction. The hemodynamic effect of a stenosis can be assessed via perfusion weighted MRI (PWI). Our aim was to...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837540/ https://www.ncbi.nlm.nih.gov/pubmed/27094741 http://dx.doi.org/10.1186/s12883-016-0576-5 |
Sumario: | BACKGROUND: Carotid artery stenosis is a frequent cause of ischemic stroke. While any degree of stenosis can cause embolic stroke, a higher degree of stenosis can also cause hemodynamic infarction. The hemodynamic effect of a stenosis can be assessed via perfusion weighted MRI (PWI). Our aim was to investigate the ability of PWI-derived parameters such as TTP (time-to-peak) and T(max) (time to the peak of the residue curve) to predict outcome in patients with unilateral acute symptomatic internal carotid artery (sICA) stenosis. METHODS: Patients with unilateral acute sICA stenosis (≥50 % according to NASCET), without intracranial stenosis or occlusion, who underwent PWI, were included. Clinical characteristics, volume of restricted diffusion, volume of prolonged TTP and T(max) were retrospectively analyzed and correlated with outcome represented by the modified Rankin Scale (mRS) score at discharge. TTP and T(max) volumes were dichotomized using a ROC curve analysis. Multivariate analysis was performed to determine which PWI-parameter was an independent predictor of outcome. RESULTS: Thirty-two patients were included. Degree of stenosis, volume of visually assessed TTP and volume of TTP ≥2 s did not distinguish patients with favorable (mRS 0–2) and unfavorable (mRS 3–6) outcome. In contrast, patients with unfavorable outcome had higher volumes of TTP ≥4 s (9.12 vs. 0.87 ml; p = 0.043), TTP ≥6 s (6.70 vs. 0.20 ml; p = 0.017), T(max) ≥4 s (25.27 vs. 0.00 ml; p = 0.043), T(max) ≥6 s (9.21 vs. 0.00 ml; p = 0.017), T(max) ≥8 s (6.86 vs. 0.00 ml; p = 0.011) and T(max) ≥10s (5.94 vs. 0.00 ml; p = 0.025) in univariate analysis. Multivariate logistic regression showed that NIHSS score on admission (Odds Ratio (OR) 0.466, confidence interval (CI) [0.224;0.971], p = 0.041), T(max) ≥8 s (OR 0.025, CI [0.001;0.898] p = 0.043) and TTP ≥6 s (OR 0.025, CI [0.001;0.898] p = 0.043) were independent predictors of clinical outcome. CONCLUSION: As they stood out in multivariate regression and are objective and reproducible parameters, PWI-derived volumes of T(max) ≥8 s and TTP ≥6 s might be superior to degree of stenosis and visually assessed TTP maps in predicting short term patient outcome. Future studies should assess if perfusion weighted imaging might guide the selection of patients for recanalization procedures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12883-016-0576-5) contains supplementary material, which is available to authorized users. |
---|