Cargando…

The Analysis of B-Cell Epitopes of Influenza Virus Hemagglutinin

Vaccination has been successfully used to prevent influenza for a long time. Influenza virus hemagglutinin (HA), which induces a humoral immune response in humans and protection against the flu, is the main antigenic component of modern influenza vaccines. However, new seasonal and pandemic influenz...

Descripción completa

Detalles Bibliográficos
Autores principales: Shcherbinin, D.N., Alekseeva, S.V., Shmarov, M.M., Smirnov, Yu.A., Naroditskiy, B.S., Gintsburg, A.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: A.I. Gordeyev 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837568/
https://www.ncbi.nlm.nih.gov/pubmed/27099781
Descripción
Sumario:Vaccination has been successfully used to prevent influenza for a long time. Influenza virus hemagglutinin (HA), which induces a humoral immune response in humans and protection against the flu, is the main antigenic component of modern influenza vaccines. However, new seasonal and pandemic influenza virus variants with altered structures of HA occasionally occur. This allows the pathogen to avoid neutralization with antibodies produced in response to previous vaccination. Development of a vaccine with the new variants of HA acting as antigens takes a long time. Therefore, during an epidemic, it is important to have passive immunization agents to prevent and treat influenza, which can be monoclonal or single-domain antibodies with universal specificity (broad-spectrum agents). We considered antibodies to conserved epitopes of influenza virus antigens as universal ones. In this paper, we tried to characterize the main B-cell epitopes of hemagglutinin and analyze our own and literature data on broadly neutralizing antibodies. We conducted a computer analysis of the best known conformational epitopes of influenza virus HAs using materials of different databases. The analysis showed that the core of the HA molecule, whose antibodies demonstrate pronounced heterosubtypic activity, can be used as a target for the search for and development of broad-spectrum antibodies to the influenza virus.