Cargando…
Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization
BACKGROUND: We aimed to use the animal model of dynamic fixation to examine the interaction of the pedicle screw surface with surrounding bone, and determine whether pedicle screws achieve good mechanical stability in the vertebrae. METHODS: Twenty-four goats aged 2–3 years had Cosmic(®) pedicle scr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837868/ https://www.ncbi.nlm.nih.gov/pubmed/25635433 http://dx.doi.org/10.4103/0366-6999.150107 |
_version_ | 1782427920627662848 |
---|---|
author | Luo, Yun-Gang Yu, Tao Liu, Guo-Min Yang, Nan |
author_facet | Luo, Yun-Gang Yu, Tao Liu, Guo-Min Yang, Nan |
author_sort | Luo, Yun-Gang |
collection | PubMed |
description | BACKGROUND: We aimed to use the animal model of dynamic fixation to examine the interaction of the pedicle screw surface with surrounding bone, and determine whether pedicle screws achieve good mechanical stability in the vertebrae. METHODS: Twenty-four goats aged 2–3 years had Cosmic(®) pedicle screws implanted into both sides of the L2-L5 pedicles. Twelve goats in the bilateral dynamic fixation group had fixation rods implanted in L2-L3 and L4-L5. Twelve goats in the unilateral dynamic fixation group had fixation rods randomly fixed on one side of the lumbar spine. The side that was not implanted with fixation rods was used as a static control group. RESULTS: In the static control group, new bone was formed around the pedicle screw and on the screw surface. In the unilateral and bilateral dynamic fixation groups, large amounts of connective tissue formed between and around the screw threads, with no new bone formation on the screw surface; the pedicle screws were loose after the fixed rods were removed. The bone mineral density and morphological parameters of the region of interest (ROI) in the unilateral and bilateral dynamic fixation group were not significantly different (P > 0.05), but were lower in the fixed groups than the static control group (P < 0.05). This showed the description bone of the ROI in the static control group was greater than in the fixation groups. Under loading conditions, the pedicle screw maximum pull force was not significantly different between the bilateral and unilateral dynamic fixation groups (P > 0.05); however the maximum pull force of the fixation groups was significantly less than the static control group (P < 0.01). CONCLUSIONS: Fibrous connective tissue formed at the bone-screw interface under unilateral and bilateral pedicle dynamic fixation, and the pedicle screws lost mechanical stability in the vertebrae. |
format | Online Article Text |
id | pubmed-4837868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-48378682016-05-02 Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization Luo, Yun-Gang Yu, Tao Liu, Guo-Min Yang, Nan Chin Med J (Engl) Original Article BACKGROUND: We aimed to use the animal model of dynamic fixation to examine the interaction of the pedicle screw surface with surrounding bone, and determine whether pedicle screws achieve good mechanical stability in the vertebrae. METHODS: Twenty-four goats aged 2–3 years had Cosmic(®) pedicle screws implanted into both sides of the L2-L5 pedicles. Twelve goats in the bilateral dynamic fixation group had fixation rods implanted in L2-L3 and L4-L5. Twelve goats in the unilateral dynamic fixation group had fixation rods randomly fixed on one side of the lumbar spine. The side that was not implanted with fixation rods was used as a static control group. RESULTS: In the static control group, new bone was formed around the pedicle screw and on the screw surface. In the unilateral and bilateral dynamic fixation groups, large amounts of connective tissue formed between and around the screw threads, with no new bone formation on the screw surface; the pedicle screws were loose after the fixed rods were removed. The bone mineral density and morphological parameters of the region of interest (ROI) in the unilateral and bilateral dynamic fixation group were not significantly different (P > 0.05), but were lower in the fixed groups than the static control group (P < 0.05). This showed the description bone of the ROI in the static control group was greater than in the fixation groups. Under loading conditions, the pedicle screw maximum pull force was not significantly different between the bilateral and unilateral dynamic fixation groups (P > 0.05); however the maximum pull force of the fixation groups was significantly less than the static control group (P < 0.01). CONCLUSIONS: Fibrous connective tissue formed at the bone-screw interface under unilateral and bilateral pedicle dynamic fixation, and the pedicle screws lost mechanical stability in the vertebrae. Medknow Publications & Media Pvt Ltd 2015-02-05 /pmc/articles/PMC4837868/ /pubmed/25635433 http://dx.doi.org/10.4103/0366-6999.150107 Text en Copyright: © 2015 Chinese Medical Journal http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Luo, Yun-Gang Yu, Tao Liu, Guo-Min Yang, Nan Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization |
title | Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization |
title_full | Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization |
title_fullStr | Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization |
title_full_unstemmed | Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization |
title_short | Study of Bone-screw Surface Fixation in Lumbar Dynamic Stabilization |
title_sort | study of bone-screw surface fixation in lumbar dynamic stabilization |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837868/ https://www.ncbi.nlm.nih.gov/pubmed/25635433 http://dx.doi.org/10.4103/0366-6999.150107 |
work_keys_str_mv | AT luoyungang studyofbonescrewsurfacefixationinlumbardynamicstabilization AT yutao studyofbonescrewsurfacefixationinlumbardynamicstabilization AT liuguomin studyofbonescrewsurfacefixationinlumbardynamicstabilization AT yangnan studyofbonescrewsurfacefixationinlumbardynamicstabilization |