Cargando…
Assessing Low-Intensity Relationships in Complex Networks
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human i...
Autores principales: | Spitz, Andreas, Gimmler, Anna, Stoeck, Thorsten, Zweig, Katharina Anna, Horvát, Emőke-Ágnes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838277/ https://www.ncbi.nlm.nih.gov/pubmed/27096435 http://dx.doi.org/10.1371/journal.pone.0152536 |
Ejemplares similares
-
A Network-Based Method to Assess the Statistical Significance of Mild Co-Regulation Effects
por: Horvát, Emőke-Ágnes, et al.
Publicado: (2013) -
Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations
por: Spitz, Andreas, et al.
Publicado: (2014) -
One Plus One Makes Three (for Social Networks)
por: Horvát, Emöke-Ágnes, et al.
Publicado: (2012) -
Correction: One Plus One Makes Three (for Social Networks)
por: Horvát, Emőke-Ágnes, et al.
Publicado: (2012) -
The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates
por: Gimmler, Anna, et al.
Publicado: (2016)