Cargando…
Learning Biomarker Models for Progression Estimation of Alzheimer’s Disease
Being able to estimate a patient’s progress in the course of Alzheimer’s disease and predicting future progression based on a number of observed biomarker values is of great interest for patients, clinicians and researchers alike. In this work, an approach for disease progress estimation is presente...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838309/ https://www.ncbi.nlm.nih.gov/pubmed/27096739 http://dx.doi.org/10.1371/journal.pone.0153040 |
Sumario: | Being able to estimate a patient’s progress in the course of Alzheimer’s disease and predicting future progression based on a number of observed biomarker values is of great interest for patients, clinicians and researchers alike. In this work, an approach for disease progress estimation is presented. Based on a set of subjects that convert to a more severe disease stage during the study, models that describe typical trajectories of biomarker values in the course of disease are learned using quantile regression. A novel probabilistic method is then derived to estimate the current disease progress as well as the rate of progression of an individual by fitting acquired biomarkers to the models. A particular strength of the method is its ability to naturally handle missing data. This means, it is applicable even if individual biomarker measurements are missing for a subject without requiring a retraining of the model. The functionality of the presented method is demonstrated using synthetic and—employing cognitive scores and image-based biomarkers—real data from the ADNI study. Further, three possible applications for progress estimation are demonstrated to underline the versatility of the approach: classification, construction of a spatio-temporal disease progression atlas and prediction of future disease progression. |
---|