Cargando…
De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation
The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838381/ https://www.ncbi.nlm.nih.gov/pubmed/26980283 http://dx.doi.org/10.1093/nar/gkw155 |
Sumario: | The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale. Here we demonstrate a computational method that allows the equilibrium structure of a large, complex DNA origami object to be determined to atomic resolution. Through direct comparison with the results of cryo-electron microscopy, we demonstrate de novo reconstruction of a 4.7 megadalton pointer structure by means of fully atomistic molecular dynamics simulations. Furthermore, we show that elastic network-guided simulations performed without solvent can yield similar accuracy at a fraction of the computational cost, making this method an attractive approach for prototyping and validation of self-assembled DNA nanostructures. |
---|