Cargando…
Model Fit after Pairwise Maximum Likelihood
Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response p...
Autores principales: | Barendse, M. T., Ligtvoet, R., Timmerman, M. E., Oort, F. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838635/ https://www.ncbi.nlm.nih.gov/pubmed/27148136 http://dx.doi.org/10.3389/fpsyg.2016.00528 |
Ejemplares similares
-
Measurement bias detection through Bayesian factor analysis
por: Barendse, M. T., et al.
Publicado: (2014) -
Covariance of maximum likelihood evolutionary distances between sequences aligned pairwise
por: Dessimoz, Christophe, et al.
Publicado: (2008) -
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
por: Gil, Manuel
Publicado: (2014) -
MDT Track Fitting with the Maximum Likelihood Method
por: Deile, M, et al.
Publicado: (1998) -
Recent developments in maximum likelihood estimation of MTMM models for categorical data
por: Jeon, Minjeong, et al.
Publicado: (2014)