Cargando…

Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses

INTRODUCTION: The Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) has been recommended for depression screening in medically ill patients. Many existing HADS-D studies have used exploratory methods to select optimal cut-offs. Often, these studies report results from a small...

Descripción completa

Detalles Bibliográficos
Autores principales: Thombs, Brett D, Benedetti, Andrea, Kloda, Lorie A, Levis, Brooke, Azar, Marleine, Riehm, Kira E, Saadat, Nazanin, Cuijpers, Pim, Gilbody, Simon, Ioannidis, John P A, McMillan, Dean, Patten, Scott B, Shrier, Ian, Steele, Russell J, Ziegelstein, Roy C, Loiselle, Carmen G, Henry, Melissa, Ismail, Zahinoor, Mitchell, Nicholas, Tonelli, Marcello
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838677/
https://www.ncbi.nlm.nih.gov/pubmed/27075844
http://dx.doi.org/10.1136/bmjopen-2016-011913
_version_ 1782428008490991616
author Thombs, Brett D
Benedetti, Andrea
Kloda, Lorie A
Levis, Brooke
Azar, Marleine
Riehm, Kira E
Saadat, Nazanin
Cuijpers, Pim
Gilbody, Simon
Ioannidis, John P A
McMillan, Dean
Patten, Scott B
Shrier, Ian
Steele, Russell J
Ziegelstein, Roy C
Loiselle, Carmen G
Henry, Melissa
Ismail, Zahinoor
Mitchell, Nicholas
Tonelli, Marcello
author_facet Thombs, Brett D
Benedetti, Andrea
Kloda, Lorie A
Levis, Brooke
Azar, Marleine
Riehm, Kira E
Saadat, Nazanin
Cuijpers, Pim
Gilbody, Simon
Ioannidis, John P A
McMillan, Dean
Patten, Scott B
Shrier, Ian
Steele, Russell J
Ziegelstein, Roy C
Loiselle, Carmen G
Henry, Melissa
Ismail, Zahinoor
Mitchell, Nicholas
Tonelli, Marcello
author_sort Thombs, Brett D
collection PubMed
description INTRODUCTION: The Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) has been recommended for depression screening in medically ill patients. Many existing HADS-D studies have used exploratory methods to select optimal cut-offs. Often, these studies report results from a small range of cut-off thresholds; cut-offs with more favourable accuracy results are more likely to be reported than others with worse accuracy estimates. When published data are combined in meta-analyses, selective reporting may generate biased summary estimates. Individual patient data (IPD) meta-analyses can address this problem by estimating accuracy with data from all studies for all relevant cut-off scores. In addition, a predictive algorithm can be generated to estimate the probability that a patient has depression based on a HADS-D score and clinical characteristics rather than dichotomous screening classification alone. The primary objectives of our IPD meta-analyses are to determine the diagnostic accuracy of the HADS-D to detect major depression among adults across all potentially relevant cut-off scores and to generate a predictive algorithm for individual patients. We are already aware of over 100 eligible studies, and more may be identified with our comprehensive search. METHODS AND ANALYSIS: Data sources will include MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, PsycINFO and Web of Science. Eligible studies will have datasets where patients are assessed for major depression based on a validated structured or semistructured clinical interview and complete the HADS-D within 2 weeks (before or after). Risk of bias will be assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Bivariate random-effects meta-analysis will be conducted for the full range of plausible cut-off values, and a predictive algorithm for individual patients will be generated. ETHICS AND DISSEMINATION: The findings of this study will be of interest to stakeholders involved in research, clinical practice and policy.
format Online
Article
Text
id pubmed-4838677
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-48386772016-04-22 Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses Thombs, Brett D Benedetti, Andrea Kloda, Lorie A Levis, Brooke Azar, Marleine Riehm, Kira E Saadat, Nazanin Cuijpers, Pim Gilbody, Simon Ioannidis, John P A McMillan, Dean Patten, Scott B Shrier, Ian Steele, Russell J Ziegelstein, Roy C Loiselle, Carmen G Henry, Melissa Ismail, Zahinoor Mitchell, Nicholas Tonelli, Marcello BMJ Open Mental Health INTRODUCTION: The Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) has been recommended for depression screening in medically ill patients. Many existing HADS-D studies have used exploratory methods to select optimal cut-offs. Often, these studies report results from a small range of cut-off thresholds; cut-offs with more favourable accuracy results are more likely to be reported than others with worse accuracy estimates. When published data are combined in meta-analyses, selective reporting may generate biased summary estimates. Individual patient data (IPD) meta-analyses can address this problem by estimating accuracy with data from all studies for all relevant cut-off scores. In addition, a predictive algorithm can be generated to estimate the probability that a patient has depression based on a HADS-D score and clinical characteristics rather than dichotomous screening classification alone. The primary objectives of our IPD meta-analyses are to determine the diagnostic accuracy of the HADS-D to detect major depression among adults across all potentially relevant cut-off scores and to generate a predictive algorithm for individual patients. We are already aware of over 100 eligible studies, and more may be identified with our comprehensive search. METHODS AND ANALYSIS: Data sources will include MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, PsycINFO and Web of Science. Eligible studies will have datasets where patients are assessed for major depression based on a validated structured or semistructured clinical interview and complete the HADS-D within 2 weeks (before or after). Risk of bias will be assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Bivariate random-effects meta-analysis will be conducted for the full range of plausible cut-off values, and a predictive algorithm for individual patients will be generated. ETHICS AND DISSEMINATION: The findings of this study will be of interest to stakeholders involved in research, clinical practice and policy. BMJ Publishing Group 2016-04-13 /pmc/articles/PMC4838677/ /pubmed/27075844 http://dx.doi.org/10.1136/bmjopen-2016-011913 Text en Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/ This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
spellingShingle Mental Health
Thombs, Brett D
Benedetti, Andrea
Kloda, Lorie A
Levis, Brooke
Azar, Marleine
Riehm, Kira E
Saadat, Nazanin
Cuijpers, Pim
Gilbody, Simon
Ioannidis, John P A
McMillan, Dean
Patten, Scott B
Shrier, Ian
Steele, Russell J
Ziegelstein, Roy C
Loiselle, Carmen G
Henry, Melissa
Ismail, Zahinoor
Mitchell, Nicholas
Tonelli, Marcello
Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
title Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
title_full Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
title_fullStr Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
title_full_unstemmed Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
title_short Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
title_sort diagnostic accuracy of the depression subscale of the hospital anxiety and depression scale (hads-d) for detecting major depression: protocol for a systematic review and individual patient data meta-analyses
topic Mental Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838677/
https://www.ncbi.nlm.nih.gov/pubmed/27075844
http://dx.doi.org/10.1136/bmjopen-2016-011913
work_keys_str_mv AT thombsbrettd diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT benedettiandrea diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT klodaloriea diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT levisbrooke diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT azarmarleine diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT riehmkirae diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT saadatnazanin diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT cuijperspim diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT gilbodysimon diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT ioannidisjohnpa diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT mcmillandean diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT pattenscottb diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT shrierian diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT steelerussellj diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT ziegelsteinroyc diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT loisellecarmeng diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT henrymelissa diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT ismailzahinoor diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT mitchellnicholas diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses
AT tonellimarcello diagnosticaccuracyofthedepressionsubscaleofthehospitalanxietyanddepressionscalehadsdfordetectingmajordepressionprotocolforasystematicreviewandindividualpatientdatametaanalyses