Cargando…

Neural circuitry involved in quitting after repeated failures: role of the cingulate and temporal parietal junction

The more times people fail the more likely they are to give up, however little is known about the neural mechanisms underlying this impact of repeated failure on decision making. Here we have used a visual shape discrimination task with computer-controlled feedback combined with functional magnetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Weihua, Kendrick, Keith M, Chen, Fei, Li, Hong, Feng, Tingyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838821/
https://www.ncbi.nlm.nih.gov/pubmed/27097529
http://dx.doi.org/10.1038/srep24713
Descripción
Sumario:The more times people fail the more likely they are to give up, however little is known about the neural mechanisms underlying this impact of repeated failure on decision making. Here we have used a visual shape discrimination task with computer-controlled feedback combined with functional magnetic resonance imaging (fMRI) to investigate the neural circuits involved. The behavioral task confirmed that the more times subjects experienced failure the more likely they were to give up, with three successive failures being the key threshold and the majority of subjects reaching the point where they decided to quit and try a new stimulus set after three or four failures. The fMRI analysis revealed activity changes in frontal, parietal, temporal, limbic and striatal regions, especially anterior cingulate cortex (ACC), posterior cingulate cortex (PCC) and temporal parietal junction (TPJ) associated with the number of previous failures experienced. Furthermore, their parameter estimates were predictive of subjects’ quitting rate. Thus, subjects reach the point where they decide to quit after three/four failures and this is associated with differential changes in brain regions involved in error monitoring and reward which regulate both failure detection and changes in decision-making strategy.