Cargando…
Washing effect on superparamagnetic iron oxide nanoparticles
Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties di...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838932/ https://www.ncbi.nlm.nih.gov/pubmed/27141527 http://dx.doi.org/10.1016/j.dib.2016.03.104 |
Sumario: | Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water. |
---|