Cargando…

HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice

Hypoxia-inducible factor (HIF)-1 mediates hypoxia- and chronic kidney disease–induced fibrotic events. Here, we assessed whether HIF-1 blockade attenuates the manifestations of diabetic nephropathy in a type 1 diabetic animal model, OVE26. YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole], an H...

Descripción completa

Detalles Bibliográficos
Autores principales: Nayak, Bijaya K., Shanmugasundaram, Karthigayan, Friedrichs, William E., Cavaglierii, Rita C., Patel, Mandakini, Barnes, Jeffrey, Block, Karen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839204/
https://www.ncbi.nlm.nih.gov/pubmed/26908870
http://dx.doi.org/10.2337/db15-0519
Descripción
Sumario:Hypoxia-inducible factor (HIF)-1 mediates hypoxia- and chronic kidney disease–induced fibrotic events. Here, we assessed whether HIF-1 blockade attenuates the manifestations of diabetic nephropathy in a type 1 diabetic animal model, OVE26. YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole], an HIF-1 inhibitor, reduced whole kidney glomerular hypertrophy, mesangial matrix expansion, extracellular matrix accumulation, and urinary albumin excretion as well as NOX4 protein expression and NADPH-dependent reactive oxygen species production, while blood glucose levels remained unchanged. The role of NOX oxidases in HIF-1–mediated extracellular matrix accumulation was explored in vitro using glomerular mesangial cells. Through a series of genetic silencing and adenoviral overexpression studies, we have defined GLUT1 as a critical downstream target of HIF-1α mediating high glucose–induced matrix expression through the NADPH oxidase isoform, NOX4. Together, our data suggest that pharmacological inhibition of HIF-1 may improve clinical manifestations of diabetic nephropathy.