Cargando…
Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools
One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-iso...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839710/ https://www.ncbi.nlm.nih.gov/pubmed/27100792 http://dx.doi.org/10.1371/journal.pone.0153782 |
_version_ | 1782428170206576640 |
---|---|
author | Leshkowitz, Dena Feldmesser, Ester Friedlander, Gilgi Jona, Ghil Ainbinder, Elena Parmet, Yisrael Horn-Saban, Shirley |
author_facet | Leshkowitz, Dena Feldmesser, Ester Friedlander, Gilgi Jona, Ghil Ainbinder, Elena Parmet, Yisrael Horn-Saban, Shirley |
author_sort | Leshkowitz, Dena |
collection | PubMed |
description | One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be encoded by the genome. The aim of this study was to assess and compare the ability of the bioinformatics approaches and tools to assemble, quantify and detect differentially expressed transcripts using RNA-Seq data, in a controlled experiment. To this end, in vitro synthesized mouse spike-in control transcripts were added to the total RNA of differentiating mouse embryonic bodies, and their expression patterns were measured. This novel approach was used to assess the accuracy of the tools, as established by comparing the observed results versus the results expected of the mouse controlled spiked-in transcripts. We found that detection of differential expression at the gene level is adequate, yet on the transcript-isoform level, all tools tested lacked accuracy and precision. |
format | Online Article Text |
id | pubmed-4839710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-48397102016-04-29 Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools Leshkowitz, Dena Feldmesser, Ester Friedlander, Gilgi Jona, Ghil Ainbinder, Elena Parmet, Yisrael Horn-Saban, Shirley PLoS One Research Article One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq for transcriptome genome-wide analysis. Although multiple studies have evaluated and benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be encoded by the genome. The aim of this study was to assess and compare the ability of the bioinformatics approaches and tools to assemble, quantify and detect differentially expressed transcripts using RNA-Seq data, in a controlled experiment. To this end, in vitro synthesized mouse spike-in control transcripts were added to the total RNA of differentiating mouse embryonic bodies, and their expression patterns were measured. This novel approach was used to assess the accuracy of the tools, as established by comparing the observed results versus the results expected of the mouse controlled spiked-in transcripts. We found that detection of differential expression at the gene level is adequate, yet on the transcript-isoform level, all tools tested lacked accuracy and precision. Public Library of Science 2016-04-21 /pmc/articles/PMC4839710/ /pubmed/27100792 http://dx.doi.org/10.1371/journal.pone.0153782 Text en © 2016 Leshkowitz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Leshkowitz, Dena Feldmesser, Ester Friedlander, Gilgi Jona, Ghil Ainbinder, Elena Parmet, Yisrael Horn-Saban, Shirley Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools |
title | Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools |
title_full | Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools |
title_fullStr | Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools |
title_full_unstemmed | Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools |
title_short | Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools |
title_sort | using synthetic mouse spike-in transcripts to evaluate rna-seq analysis tools |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839710/ https://www.ncbi.nlm.nih.gov/pubmed/27100792 http://dx.doi.org/10.1371/journal.pone.0153782 |
work_keys_str_mv | AT leshkowitzdena usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools AT feldmesserester usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools AT friedlandergilgi usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools AT jonaghil usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools AT ainbinderelena usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools AT parmetyisrael usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools AT hornsabanshirley usingsyntheticmousespikeintranscriptstoevaluaternaseqanalysistools |