Cargando…

In-depth performance analysis of an EEG based neonatal seizure detection algorithm

OBJECTIVE: To describe a novel neurophysiology based performance analysis of automated seizure detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures and causes of false detections to identify areas for algorithmic improvement. METHODS: EEGs of 20 term n...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathieson, S., Rennie, J., Livingstone, V., Temko, A., Low, E., Pressler, R.M., Boylan, G.B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840013/
https://www.ncbi.nlm.nih.gov/pubmed/27072097
http://dx.doi.org/10.1016/j.clinph.2016.01.026
Descripción
Sumario:OBJECTIVE: To describe a novel neurophysiology based performance analysis of automated seizure detection algorithms for neonatal EEG to characterize features of detected and non-detected seizures and causes of false detections to identify areas for algorithmic improvement. METHODS: EEGs of 20 term neonates were recorded (10 seizure, 10 non-seizure). Seizures were annotated by an expert and characterized using a novel set of 10 criteria. ANSeR seizure detection algorithm (SDA) seizure annotations were compared to the expert to derive detected and non-detected seizures at three SDA sensitivity thresholds. Differences in seizure characteristics between groups were compared using univariate and multivariate analysis. False detections were characterized. RESULTS: The expert detected 421 seizures. The SDA at thresholds 0.4, 0.5, 0.6 detected 60%, 54% and 45% of seizures. At all thresholds, multivariate analyses demonstrated that the odds of detecting seizure increased with 4 criteria: seizure amplitude, duration, rhythmicity and number of EEG channels involved at seizure peak. Major causes of false detections included respiration and sweat artefacts or a highly rhythmic background, often during intermediate sleep. CONCLUSION: This rigorous analysis allows estimation of how key seizure features are exploited by SDAs. SIGNIFICANCE: This study resulted in a beta version of ANSeR with significantly improved performance.