Cargando…

Impact of urban contamination of the La Paz River basin on thermotolerant coliform density and occurrence of multiple antibiotic resistant enteric pathogens in river water, irrigated soil and fresh vegetables

La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a...

Descripción completa

Detalles Bibliográficos
Autores principales: Poma, Violeta, Mamani, Nataniel, Iñiguez, Volga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840126/
https://www.ncbi.nlm.nih.gov/pubmed/27186463
http://dx.doi.org/10.1186/s40064-016-2132-6
Descripción
Sumario:La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a 1 year study, to evaluate microbial quality parameters and occurrence of multiple enteropathogenic bacteria (Enterohemorrhagic E. coli—EHEC, Enteroinvasive E. coli or Shigella—EIEC/Shigella, Enteroaggregative E. coli—EAEC, Enteropathogenic E. coli—EPEC Enterotoxigenic E. coli—ETEC and Salmonella) and its resistance to 11 antibiotics. Four sampling locations were selected: a fresh mountain water reservoir (un-impacted, site 1) and downstream sites receiving wastewater discharges (impacted, sites 2–4). River water (sites 1–4, N = 48), and soil and vegetable samples (site 3, N = 24) were collected during dry (April–September) and rainy seasons (October–March). Throughout the study, thermotolerant coliform density values at impacted sites greatly exceeded the guidelines for recreational and agricultural water uses. Seasonal differences were found for thermotolerant coliform density during dry season in water samples nearby a populated and hospital compound area. In contrast to the un-impacted site, where none of the tested enteropathogens were found, 100 % of surface water, 83 % of soil and 67 % of vegetable samples at impacted sites, were contaminated with at least one enteropathogen, being ETEC and Salmonella the most frequently found. ETEC isolates displayed different patterns of toxin genes among sites. The occurrence of enteropathogens was associated with the thermotolerant coliform density. At impacted sites, multiple enteropathogens were frequently found during rainy season. Among isolated enteropathogens, 50 % were resistant to at least two antibiotics, with resistance to ampicillin, nalidixic acid, trimethoprim–sulfamethoxazole and tetracycline commonly present. Moreover, some Salmonella isolates were distinguished by their multi-resistance to ≥8 antibiotics, within soil and vegetable samples. Overall, this study demonstrates that La Paz River—an affluent of the Amazon macrobasin—is heavily polluted along the year with a high density of thermotolerant coliforms and is a reservoir of multiple antibiotic resistant enteropathogens, present in river water, soil and vegetables. These data highlight health risk associated with food and waterborne diseases at the region.