Cargando…
Randomly Distributed Fabry-Pérot-type Metal Nanowire Resonators and Their Lasing Action
Optical feedback mechanisms are often obtained from well-defined resonator structures fabricated by top-down processes. Here, we demonstrate that two-dimensional networks of metallic nanowires dispersed on the semiconductor slab can provide strong in-plane optical feedback and, thus, form randomly-d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840363/ https://www.ncbi.nlm.nih.gov/pubmed/27102220 http://dx.doi.org/10.1038/srep24898 |
Sumario: | Optical feedback mechanisms are often obtained from well-defined resonator structures fabricated by top-down processes. Here, we demonstrate that two-dimensional networks of metallic nanowires dispersed on the semiconductor slab can provide strong in-plane optical feedback and, thus, form randomly-distributed Fabry-Pérot-type resonators that can achieve multi- or single-mode lasing action in the near infrared wavelengths. Albeit with their subwavelength-scale cross-sections and uncontrolled inter-nanowire distances, a cluster of nearly parallel metal nanowires acts as an effective in-situ reflector for the semiconductor-metal slab waveguide modes for coherent optical feedback in the lateral direction. Fabry-Pérot type resonance can be readily developed by a pair of such clusters coincidentally formed in the solution-processed random nanowire network. Our low-cost and large-area approach for opportunistic random cavity formation would open a new pathway for integrated planar light sources for low-coherence imaging and sensing applications. |
---|