Cargando…
GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke
BACKGROUND: Stroke could lead to serious morbidity, of which ischemic stroke counts for majority of the cases. Inflammation plays an important role in the pathogenesis of ischemic stroke, thus drugs targeting inflammation could be potentially neuroprotective. Estradiol was shown to be neuroprotectiv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840664/ https://www.ncbi.nlm.nih.gov/pubmed/27127723 http://dx.doi.org/10.1002/brb3.449 |
_version_ | 1782428300037062656 |
---|---|
author | Zhao, Tian‐Zhi Ding, Qian Hu, Jun He, Shi‐Ming Shi, Fei Ma, Lian‐Ting |
author_facet | Zhao, Tian‐Zhi Ding, Qian Hu, Jun He, Shi‐Ming Shi, Fei Ma, Lian‐Ting |
author_sort | Zhao, Tian‐Zhi |
collection | PubMed |
description | BACKGROUND: Stroke could lead to serious morbidity, of which ischemic stroke counts for majority of the cases. Inflammation plays an important role in the pathogenesis of ischemic stroke, thus drugs targeting inflammation could be potentially neuroprotective. Estradiol was shown to be neuroprotective as well as anti‐inflammatory in animal models of ischemic stroke with unclear mechanism. We hypothesize that the anti‐inflammatory and neuroprotective effect of estradiol is mediated by the estradiol receptor G protein‐coupled estrogen receptor 1 (GPER) expressed on microglia. METHODS: We have generated the rat global cerebral ischemic model and the primary microglia culture to study the neuroprotective and anti‐inflammatory effect of estradiol. We have further used pharmacological methods and siRNA knockdown approach to study the underlying mechanism. RESULTS: We found that estradiol reduced the level of proinflammatory cytokines including IL‐1β and TNF‐α, both in vivo and in vitro. We also found that the specific GPER agonist G1 could reduce the level of IL‐1β (P = 0 P = 0.0017, one‐way ANOVA and post hoc test) and TNF‐α (P < 0.0001) in the primary microglia culture. Moreover, the specific GPER antagonist G15 was able to abolish the anti‐inflammatory effect of estradiol. Estradiol failed to reduce the level of IL‐1β (P = 0.4973, unpaired Student's t‐test) and TNF‐α (P = 0.1627) when GPER was knocked down. CONCLUSIONS: Our studies have suggested that GPER expressed on microglia mediated the anti‐inflammatory effect of estradiol after ischemic stroke. Our studies could potentially help to develop more specific drugs to manage inflammation postischemic stroke. |
format | Online Article Text |
id | pubmed-4840664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48406642016-04-28 GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke Zhao, Tian‐Zhi Ding, Qian Hu, Jun He, Shi‐Ming Shi, Fei Ma, Lian‐Ting Brain Behav Original Research BACKGROUND: Stroke could lead to serious morbidity, of which ischemic stroke counts for majority of the cases. Inflammation plays an important role in the pathogenesis of ischemic stroke, thus drugs targeting inflammation could be potentially neuroprotective. Estradiol was shown to be neuroprotective as well as anti‐inflammatory in animal models of ischemic stroke with unclear mechanism. We hypothesize that the anti‐inflammatory and neuroprotective effect of estradiol is mediated by the estradiol receptor G protein‐coupled estrogen receptor 1 (GPER) expressed on microglia. METHODS: We have generated the rat global cerebral ischemic model and the primary microglia culture to study the neuroprotective and anti‐inflammatory effect of estradiol. We have further used pharmacological methods and siRNA knockdown approach to study the underlying mechanism. RESULTS: We found that estradiol reduced the level of proinflammatory cytokines including IL‐1β and TNF‐α, both in vivo and in vitro. We also found that the specific GPER agonist G1 could reduce the level of IL‐1β (P = 0 P = 0.0017, one‐way ANOVA and post hoc test) and TNF‐α (P < 0.0001) in the primary microglia culture. Moreover, the specific GPER antagonist G15 was able to abolish the anti‐inflammatory effect of estradiol. Estradiol failed to reduce the level of IL‐1β (P = 0.4973, unpaired Student's t‐test) and TNF‐α (P = 0.1627) when GPER was knocked down. CONCLUSIONS: Our studies have suggested that GPER expressed on microglia mediated the anti‐inflammatory effect of estradiol after ischemic stroke. Our studies could potentially help to develop more specific drugs to manage inflammation postischemic stroke. John Wiley and Sons Inc. 2016-03-22 /pmc/articles/PMC4840664/ /pubmed/27127723 http://dx.doi.org/10.1002/brb3.449 Text en © 2016 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Zhao, Tian‐Zhi Ding, Qian Hu, Jun He, Shi‐Ming Shi, Fei Ma, Lian‐Ting GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
title |
GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
title_full |
GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
title_fullStr |
GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
title_full_unstemmed |
GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
title_short |
GPER expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
title_sort | gper expressed on microglia mediates the anti‐inflammatory effect of estradiol in ischemic stroke |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840664/ https://www.ncbi.nlm.nih.gov/pubmed/27127723 http://dx.doi.org/10.1002/brb3.449 |
work_keys_str_mv | AT zhaotianzhi gperexpressedonmicrogliamediatestheantiinflammatoryeffectofestradiolinischemicstroke AT dingqian gperexpressedonmicrogliamediatestheantiinflammatoryeffectofestradiolinischemicstroke AT hujun gperexpressedonmicrogliamediatestheantiinflammatoryeffectofestradiolinischemicstroke AT heshiming gperexpressedonmicrogliamediatestheantiinflammatoryeffectofestradiolinischemicstroke AT shifei gperexpressedonmicrogliamediatestheantiinflammatoryeffectofestradiolinischemicstroke AT malianting gperexpressedonmicrogliamediatestheantiinflammatoryeffectofestradiolinischemicstroke |