Cargando…
A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs
Characterizing the spiking statistics of neurons receiving noisy synaptic input is a central problem in computational neuroscience. Monte Carlo approaches to this problem are computationally expensive and often fail to provide mechanistic insight. Thus, the field has seen the development of mathemat...
Autor principal: | Rosenbaum, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840919/ https://www.ncbi.nlm.nih.gov/pubmed/27148036 http://dx.doi.org/10.3389/fncom.2016.00039 |
Ejemplares similares
-
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
por: Pezo, Danilo, et al.
Publicado: (2014) -
Adaptive algorithms and stochastic approximations
por: Benveniste, Albert, et al.
Publicado: (1990) -
Methods of numerical approximation
por: Handscomb, David Christopher
Publicado: (1966) -
An approximate diffusion process for environmental stochasticity in infectious disease transmission modelling
por: Ghosh, Sanmitra, et al.
Publicado: (2023) -
A Lyapunov-Stable Adaptive Method to Approximate Sensorimotor Models for Sensor-Based Control
por: Navarro-Alarcon, David, et al.
Publicado: (2020)