Cargando…
Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms
In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its mono...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841237/ https://www.ncbi.nlm.nih.gov/pubmed/27114857 http://dx.doi.org/10.7717/peerj.1574 |
_version_ | 1782428369417142272 |
---|---|
author | Stepanenko, Olga V. Roginskii, Denis O. Stepanenko, Olesya V. Kuznetsova, Irina M. Uversky, Vladimir N. Turoverov, Konstantin K. |
author_facet | Stepanenko, Olga V. Roginskii, Denis O. Stepanenko, Olesya V. Kuznetsova, Irina M. Uversky, Vladimir N. Turoverov, Konstantin K. |
author_sort | Stepanenko, Olga V. |
collection | PubMed |
description | In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located. |
format | Online Article Text |
id | pubmed-4841237 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-48412372016-04-25 Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms Stepanenko, Olga V. Roginskii, Denis O. Stepanenko, Olesya V. Kuznetsova, Irina M. Uversky, Vladimir N. Turoverov, Konstantin K. PeerJ Biochemistry In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located. PeerJ Inc. 2016-04-18 /pmc/articles/PMC4841237/ /pubmed/27114857 http://dx.doi.org/10.7717/peerj.1574 Text en ©2016 Stepanenko et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Biochemistry Stepanenko, Olga V. Roginskii, Denis O. Stepanenko, Olesya V. Kuznetsova, Irina M. Uversky, Vladimir N. Turoverov, Konstantin K. Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms |
title | Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms |
title_full | Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms |
title_fullStr | Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms |
title_full_unstemmed | Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms |
title_short | Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms |
title_sort | structure and stability of recombinant bovine odorant-binding protein: ii. unfolding of the monomeric forms |
topic | Biochemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841237/ https://www.ncbi.nlm.nih.gov/pubmed/27114857 http://dx.doi.org/10.7717/peerj.1574 |
work_keys_str_mv | AT stepanenkoolgav structureandstabilityofrecombinantbovineodorantbindingproteiniiunfoldingofthemonomericforms AT roginskiideniso structureandstabilityofrecombinantbovineodorantbindingproteiniiunfoldingofthemonomericforms AT stepanenkoolesyav structureandstabilityofrecombinantbovineodorantbindingproteiniiunfoldingofthemonomericforms AT kuznetsovairinam structureandstabilityofrecombinantbovineodorantbindingproteiniiunfoldingofthemonomericforms AT uverskyvladimirn structureandstabilityofrecombinantbovineodorantbindingproteiniiunfoldingofthemonomericforms AT turoverovkonstantink structureandstabilityofrecombinantbovineodorantbindingproteiniiunfoldingofthemonomericforms |