Cargando…
Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect n...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841442/ https://www.ncbi.nlm.nih.gov/pubmed/26678546 http://dx.doi.org/10.1111/gbb.12279 |
_version_ | 1782428395433361408 |
---|---|
author | He, X. Zhou, S. St. Armour, G. E. Mackay, T. F. C. Anholt, R. R. H. |
author_facet | He, X. Zhou, S. St. Armour, G. E. Mackay, T. F. C. Anholt, R. R. H. |
author_sort | He, X. |
collection | PubMed |
description | The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F(1) genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. |
format | Online Article Text |
id | pubmed-4841442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-48414422016-04-22 Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior He, X. Zhou, S. St. Armour, G. E. Mackay, T. F. C. Anholt, R. R. H. Genes Brain Behav Original Articles The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F(1) genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes. Blackwell Publishing Ltd 2016-01-18 2016-02 /pmc/articles/PMC4841442/ /pubmed/26678546 http://dx.doi.org/10.1111/gbb.12279 Text en © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles He, X. Zhou, S. St. Armour, G. E. Mackay, T. F. C. Anholt, R. R. H. Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
title | Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
title_full | Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
title_fullStr | Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
title_full_unstemmed | Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
title_short | Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior |
title_sort | epistatic partners of neurogenic genes modulate drosophila olfactory behavior |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841442/ https://www.ncbi.nlm.nih.gov/pubmed/26678546 http://dx.doi.org/10.1111/gbb.12279 |
work_keys_str_mv | AT hex epistaticpartnersofneurogenicgenesmodulatedrosophilaolfactorybehavior AT zhous epistaticpartnersofneurogenicgenesmodulatedrosophilaolfactorybehavior AT starmourge epistaticpartnersofneurogenicgenesmodulatedrosophilaolfactorybehavior AT mackaytfc epistaticpartnersofneurogenicgenesmodulatedrosophilaolfactorybehavior AT anholtrrh epistaticpartnersofneurogenicgenesmodulatedrosophilaolfactorybehavior |