Cargando…

An efficient approach for limited-data chemical species tomography and its error bounds

We present a computationally efficient reconstruction method for the limited-data chemical species tomography problem that incorporates projection of the unknown gas concentration function onto a low-dimensional subspace, and regularization using prior information obtained from a simple flow model....

Descripción completa

Detalles Bibliográficos
Autores principales: Polydorides, N., Tsekenis, S.-A., McCann, H., Prat, V.-D. A., Wright, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841490/
https://www.ncbi.nlm.nih.gov/pubmed/27118923
http://dx.doi.org/10.1098/rspa.2015.0875
_version_ 1782428396107595776
author Polydorides, N.
Tsekenis, S.-A.
McCann, H.
Prat, V.-D. A.
Wright, P.
author_facet Polydorides, N.
Tsekenis, S.-A.
McCann, H.
Prat, V.-D. A.
Wright, P.
author_sort Polydorides, N.
collection PubMed
description We present a computationally efficient reconstruction method for the limited-data chemical species tomography problem that incorporates projection of the unknown gas concentration function onto a low-dimensional subspace, and regularization using prior information obtained from a simple flow model. In this context, the contribution of this work is on the analysis of the projection-induced data errors and the calculation of bounds for the overall image error incorporating the impact of projection and regularization errors as well as measurement noise. As an extension to this methodology, we present a variant algorithm that preserves the positivity of the concentration image.
format Online
Article
Text
id pubmed-4841490
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-48414902016-04-26 An efficient approach for limited-data chemical species tomography and its error bounds Polydorides, N. Tsekenis, S.-A. McCann, H. Prat, V.-D. A. Wright, P. Proc Math Phys Eng Sci Research Articles We present a computationally efficient reconstruction method for the limited-data chemical species tomography problem that incorporates projection of the unknown gas concentration function onto a low-dimensional subspace, and regularization using prior information obtained from a simple flow model. In this context, the contribution of this work is on the analysis of the projection-induced data errors and the calculation of bounds for the overall image error incorporating the impact of projection and regularization errors as well as measurement noise. As an extension to this methodology, we present a variant algorithm that preserves the positivity of the concentration image. The Royal Society Publishing 2016-03 /pmc/articles/PMC4841490/ /pubmed/27118923 http://dx.doi.org/10.1098/rspa.2015.0875 Text en © 2016 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research Articles
Polydorides, N.
Tsekenis, S.-A.
McCann, H.
Prat, V.-D. A.
Wright, P.
An efficient approach for limited-data chemical species tomography and its error bounds
title An efficient approach for limited-data chemical species tomography and its error bounds
title_full An efficient approach for limited-data chemical species tomography and its error bounds
title_fullStr An efficient approach for limited-data chemical species tomography and its error bounds
title_full_unstemmed An efficient approach for limited-data chemical species tomography and its error bounds
title_short An efficient approach for limited-data chemical species tomography and its error bounds
title_sort efficient approach for limited-data chemical species tomography and its error bounds
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841490/
https://www.ncbi.nlm.nih.gov/pubmed/27118923
http://dx.doi.org/10.1098/rspa.2015.0875
work_keys_str_mv AT polydoridesn anefficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT tsekenissa anefficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT mccannh anefficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT pratvda anefficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT wrightp anefficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT polydoridesn efficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT tsekenissa efficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT mccannh efficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT pratvda efficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds
AT wrightp efficientapproachforlimiteddatachemicalspeciestomographyanditserrorbounds