Cargando…
Inferring the Spatio-temporal Patterns of Dengue Transmission from Surveillance Data in Guangzhou, China
BACKGROUND: Dengue is a serious vector-borne disease, and incidence rates have significantly increased during the past few years, particularly in 2014 in Guangzhou. The current situation is more complicated, due to various factors such as climate warming, urbanization, population increase, and human...
Autores principales: | Zhu, Guanghu, Liu, Jiming, Tan, Qi, Shi, Benyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841561/ https://www.ncbi.nlm.nih.gov/pubmed/27105350 http://dx.doi.org/10.1371/journal.pntd.0004633 |
Ejemplares similares
-
Inferring Plasmodium vivax Transmission Networks from Tempo-Spatial Surveillance Data
por: Shi, Benyun, et al.
Publicado: (2014) -
Inference and prediction of malaria transmission dynamics using time series data
por: Shi, Benyun, et al.
Publicado: (2020) -
Mining geographic variations of Plasmodium vivax for active surveillance: a case study in China
por: Shi, Benyun, et al.
Publicado: (2015) -
Spatiotemporal Transmission Patterns and Determinants of Dengue Fever: A Case Study of Guangzhou, China
por: Chen, Yebin, et al.
Publicado: (2019) -
Surveillance of dengue vectors using spatio-temporal Bayesian modeling
por: C. Costa, Ana Carolina, et al.
Publicado: (2015)