Cargando…
A class of reduced-order models in the theory of waves and stability
This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumb...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841659/ https://www.ncbi.nlm.nih.gov/pubmed/27118895 http://dx.doi.org/10.1098/rspa.2015.0703 |
_version_ | 1782428424387690496 |
---|---|
author | Chapman, C. J. Sorokin, S. V. |
author_facet | Chapman, C. J. Sorokin, S. V. |
author_sort | Chapman, C. J. |
collection | PubMed |
description | This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation. |
format | Online Article Text |
id | pubmed-4841659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-48416592016-04-26 A class of reduced-order models in the theory of waves and stability Chapman, C. J. Sorokin, S. V. Proc Math Phys Eng Sci Research Articles This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation. The Royal Society Publishing 2016-02 /pmc/articles/PMC4841659/ /pubmed/27118895 http://dx.doi.org/10.1098/rspa.2015.0703 Text en © 2016 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Chapman, C. J. Sorokin, S. V. A class of reduced-order models in the theory of waves and stability |
title | A class of reduced-order models in the theory of waves and stability |
title_full | A class of reduced-order models in the theory of waves and stability |
title_fullStr | A class of reduced-order models in the theory of waves and stability |
title_full_unstemmed | A class of reduced-order models in the theory of waves and stability |
title_short | A class of reduced-order models in the theory of waves and stability |
title_sort | class of reduced-order models in the theory of waves and stability |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841659/ https://www.ncbi.nlm.nih.gov/pubmed/27118895 http://dx.doi.org/10.1098/rspa.2015.0703 |
work_keys_str_mv | AT chapmancj aclassofreducedordermodelsinthetheoryofwavesandstability AT sorokinsv aclassofreducedordermodelsinthetheoryofwavesandstability AT chapmancj classofreducedordermodelsinthetheoryofwavesandstability AT sorokinsv classofreducedordermodelsinthetheoryofwavesandstability |