Cargando…
Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data
BACKGROUND: One substantial part of microarray studies is to predict patients’ survival based on their gene expression profile. Variable selection techniques are powerful tools to handle high dimensionality in analysis of microarray data. However, these techniques have not been investigated in compe...
Autores principales: | TAPAK, Leili, MAHJUB, Hossein, SADEGHIFAR, Majid, SAIDIJAM, Massoud, POOROLAJAL, Jalal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841879/ https://www.ncbi.nlm.nih.gov/pubmed/27114989 |
Ejemplares similares
-
Competing Risks Data Analysis with High-dimensional Covariates: An Application in Bladder Cancer
por: Tapak, Leili, et al.
Publicado: (2015) -
Predicting the survival time for diffuse large B-cell lymphoma using microarray data
por: Khoshhali, Mehri, et al.
Publicado: (2012) -
Landmark Prediction of Survival for Breast Cancer Patients: A Case Study in Tehran, Iran
por: ALAFCHI, Behnaz, et al.
Publicado: (2019) -
High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study
por: Hamidi, Omid, et al.
Publicado: (2014) -
Real-Data Comparison of Data Mining Methods in Prediction of Diabetes in Iran
por: Tapak, Lily, et al.
Publicado: (2013)