Cargando…

AB007. Neurotensin derived from cancer stroma contributes to castration resistance via promoting neuroendocrine transdifferentiation

The mechanism of neuroendocrine transdifferentiation (NED) during the development of castration-resistant prostate cancer (CRPC) remains undefined. Although androgen-deprivation therapy (ADT) can impair tumor cell growth, ADT can also triggers a parallel reaction, leading to increased neurotensin (N...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Shimiao, Shang, Zhiqun, Tian, Hao, Flores-Morales, Amilcar, Niu, Yuanjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842563/
http://dx.doi.org/10.21037/tau.2016.s007
Descripción
Sumario:The mechanism of neuroendocrine transdifferentiation (NED) during the development of castration-resistant prostate cancer (CRPC) remains undefined. Although androgen-deprivation therapy (ADT) can impair tumor cell growth, ADT can also triggers a parallel reaction, leading to increased neurotensin (NTS) production in cancer associated stromal cells which drives NED. Here, we systematically explore the NTS network in tumor microenvironment that drives NED following ADT. The CK8+/CK14+ intermediate cells, as opposed to other epithelial cells, can be transdifferentiated to neuroendocrine (NE) status by excessive NTS through simultaneous activation of neurotensin receptor 1 (NTSR1)-PRKACB and 3 (NTSR3)-AHNAK axes. The importance of PRKACB and AHNAK in NED development was then confirmed in human prostate tumor tissues. More importantly, we demonstrated SR48692 (an inhibitor of NTSR1) could inhibit NED and prevent castration resistance in prostate tumor from xenografts and TRAMP models. We propose that targeting this pathway could provide benefit for patients with tumors expressing high levels of NTS following ADT.