Cargando…
New Compounds Induce Brassinosteroid Deficient-like Phenotypes in Rice
Brassinosteroids (BRs) are steroidal plant hormones with potent plant growth promoting activity. Because BR-deficient mutants of rice exhibit altered plant architecture and important agronomic traits, we conducted a systemic search for specific inhibitors of BR biosynthesis to manipulate the BR leve...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844384/ https://www.ncbi.nlm.nih.gov/pubmed/27137391 http://dx.doi.org/10.3390/plants2030521 |
Sumario: | Brassinosteroids (BRs) are steroidal plant hormones with potent plant growth promoting activity. Because BR-deficient mutants of rice exhibit altered plant architecture and important agronomic traits, we conducted a systemic search for specific inhibitors of BR biosynthesis to manipulate the BR levels in plant tissues. Although previous studies have been conducted with BR biosynthesis inhibitors in dicots, little is known regarding the effects of BR biosynthesis inhibition in monocot plants. In this work, we used potent inhibitors of BR biosynthesis in Arabidopsis, and we performed a hydroponic culture of rice seedlings to evaluate the effects of BR biosynthesis inhibition. Among the test compounds, we found that 1-[[2-(4-Chlorophenyl)-4-(phenoxymethyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole (1) is a potent inhibitor that could induce phenotypes in rice seedlings that were similar to those observed in brassinosteroid deficient plants. The IC(50) value for the retardation of plant growth in rice seedlings was approximately 1.27 ± 0.43 μM. The IC(50) value for reducing the bending angle of the lamina joint was approximately 0.55 ± 0.15 μM. |
---|