Cargando…
Inference of biological networks using Bi-directional Random Forest Granger causality
The standard ordinary least squares based Granger causality is one of the widely used methods for detecting causal interactions between time series data. However, recent developments in technology limit the utilization of some existing implementations due to the availability of high dimensional data...
Autores principales: | Furqan, Mohammad Shaheryar, Siyal, Mohammad Yakoob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844585/ https://www.ncbi.nlm.nih.gov/pubmed/27186478 http://dx.doi.org/10.1186/s40064-016-2156-y |
Ejemplares similares
-
Elastic-Net Copula Granger Causality for Inference of Biological Networks
por: Furqan, Mohammad Shaheryar, et al.
Publicado: (2016) -
On the Inference of Functional Circadian Networks Using Granger Causality
por: Pourzanjani, Arya, et al.
Publicado: (2015) -
Prophetic Granger Causality to infer gene regulatory networks
por: Carlin, Daniel E., et al.
Publicado: (2017) -
Granger-Causality Inference of the Existence of Unobserved Important Components in Network Analysis
por: Elsegai, Heba
Publicado: (2021) -
Granger causality vs. dynamic Bayesian network inference: a comparative study
por: Zou, Cunlu, et al.
Publicado: (2009)