Cargando…
Inhibitory interactions promote frequent bistability among competing bacteria
It is largely unknown how the process of microbial community assembly is affected by the order of species arrival, initial species abundances and interactions between species. A minimal way of capturing competitive abilities in a frequency-dependent manner is with an invasibility network specifying...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844671/ https://www.ncbi.nlm.nih.gov/pubmed/27097658 http://dx.doi.org/10.1038/ncomms11274 |
_version_ | 1782428816449208320 |
---|---|
author | Wright, Erik S. Vetsigian, Kalin H. |
author_facet | Wright, Erik S. Vetsigian, Kalin H. |
author_sort | Wright, Erik S. |
collection | PubMed |
description | It is largely unknown how the process of microbial community assembly is affected by the order of species arrival, initial species abundances and interactions between species. A minimal way of capturing competitive abilities in a frequency-dependent manner is with an invasibility network specifying whether a species at low abundance can increase in frequency in an environment dominated by another species. Here, using a panel of prolific small-molecule producers and a habitat with feast-and-famine cycles, we show that the most abundant strain can often exclude other strains—resulting in bistability between pairs of strains. Instead of a single winner, the empirically determined invasibility network is ruled by multiple strains that cannot invade each other, and does not contain loops of cyclic dominance. Antibiotic inhibition contributes to bistability by helping producers resist invasions while at high abundance and by reducing producers' ability to invade when at low abundance. |
format | Online Article Text |
id | pubmed-4844671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48446712016-04-27 Inhibitory interactions promote frequent bistability among competing bacteria Wright, Erik S. Vetsigian, Kalin H. Nat Commun Article It is largely unknown how the process of microbial community assembly is affected by the order of species arrival, initial species abundances and interactions between species. A minimal way of capturing competitive abilities in a frequency-dependent manner is with an invasibility network specifying whether a species at low abundance can increase in frequency in an environment dominated by another species. Here, using a panel of prolific small-molecule producers and a habitat with feast-and-famine cycles, we show that the most abundant strain can often exclude other strains—resulting in bistability between pairs of strains. Instead of a single winner, the empirically determined invasibility network is ruled by multiple strains that cannot invade each other, and does not contain loops of cyclic dominance. Antibiotic inhibition contributes to bistability by helping producers resist invasions while at high abundance and by reducing producers' ability to invade when at low abundance. Nature Publishing Group 2016-04-21 /pmc/articles/PMC4844671/ /pubmed/27097658 http://dx.doi.org/10.1038/ncomms11274 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Wright, Erik S. Vetsigian, Kalin H. Inhibitory interactions promote frequent bistability among competing bacteria |
title | Inhibitory interactions promote frequent bistability among competing bacteria |
title_full | Inhibitory interactions promote frequent bistability among competing bacteria |
title_fullStr | Inhibitory interactions promote frequent bistability among competing bacteria |
title_full_unstemmed | Inhibitory interactions promote frequent bistability among competing bacteria |
title_short | Inhibitory interactions promote frequent bistability among competing bacteria |
title_sort | inhibitory interactions promote frequent bistability among competing bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844671/ https://www.ncbi.nlm.nih.gov/pubmed/27097658 http://dx.doi.org/10.1038/ncomms11274 |
work_keys_str_mv | AT wrighteriks inhibitoryinteractionspromotefrequentbistabilityamongcompetingbacteria AT vetsigiankalinh inhibitoryinteractionspromotefrequentbistabilityamongcompetingbacteria |