Cargando…
Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants
MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and i...
Autores principales: | Yousef, Malik, Saçar Demirci, Müşerref Duygu, Khalifa, Waleed, Allmer, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844869/ https://www.ncbi.nlm.nih.gov/pubmed/27190509 http://dx.doi.org/10.1155/2016/5670851 |
Ejemplares similares
-
The impact of feature selection on one and two-class classification performance for plant microRNAs
por: Khalifa, Waleed, et al.
Publicado: (2016) -
Delineating the impact of machine learning elements in pre-microRNA detection
por: Saçar Demirci, Müşerref Duygu, et al.
Publicado: (2017) -
Improving the Quality of Positive Datasets for the Establishment of Machine Learning Models for pre-microRNA Detection
por: Demirci, Müşerref Duygu Saçar, et al.
Publicado: (2017) -
On the performance of pre-microRNA detection algorithms
por: Saçar Demirci, Müşerref Duygu, et al.
Publicado: (2017) -
Computational Prediction of MicroRNAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression
por: Saçar, Müşerref Duygu, et al.
Publicado: (2014)