Cargando…
Data on copula modeling of mixed discrete and continuous neural time series
Copula is an important tool for modeling neural dependence. Recent work on copula has been expanded to jointly model mixed time series in neuroscience (“Hu et al., 2016, Joint Analysis of Spikes and Local Field Potentials using Copula” [1]). Here we present further data for joint analysis of spike a...
Autores principales: | Hu, Meng, Li, Mingyao, Li, Wu, Liang, Hualou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845150/ https://www.ncbi.nlm.nih.gov/pubmed/27158651 http://dx.doi.org/10.1016/j.dib.2016.04.020 |
Ejemplares similares
-
Mixed vine copula flows for flexible modeling of neural dependencies
por: Mitskopoulos, Lazaros, et al.
Publicado: (2022) -
Search for Information-Bearing Components in Neural Data
por: Hu, Meng, et al.
Publicado: (2014) -
Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
por: Fossaluza, Victor, et al.
Publicado: (2018) -
Data on Gaussian copula modelling of the views of sport club members relating to community sport, Australian sport policy and advocacy
por: Mountifield, Charles
Publicado: (2022) -
A scalable discrete-time survival model for neural networks
por: Gensheimer, Michael F., et al.
Publicado: (2019)