Cargando…
Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding
BACKGROUND: Proteins are the important molecules which participate in virtually every aspect of cellular function within an organism in pairs. Although high-throughput technologies have generated considerable protein-protein interactions (PPIs) data for various species, the processes of experimental...
Autores principales: | Huang, Yu-An, You, Zhu-Hong, Chen, Xing, Chan, Keith, Luo, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845433/ https://www.ncbi.nlm.nih.gov/pubmed/27112932 http://dx.doi.org/10.1186/s12859-016-1035-4 |
Ejemplares similares
-
Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from Protein Sequence
por: Huang, Yu-An, et al.
Publicado: (2015) -
Prediction of Protein–Protein Interactions with Clustered Amino Acids and Weighted Sparse Representation
por: Huang, Qiaoying, et al.
Publicado: (2015) -
Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition
por: Huang, Yu-An, et al.
Publicado: (2016) -
Robust and accurate prediction of self-interacting proteins from protein sequence information by exploiting weighted sparse representation based classifier
por: Li, Yang, et al.
Publicado: (2022) -
FCTP-WSRC: Protein–Protein Interactions Prediction via Weighted Sparse Representation Based Classification
por: Kong, Meng, et al.
Publicado: (2020)