Cargando…
Imaging of oligodendroglioma
Oligodendroglioma are glial tumours, predominantly occurring in adults. Their hallmark molecular feature is codeletion of the 1p and 19q chromosome arms, which is not only of diagnostic but also of prognostic and predictive relevance. On imaging, these tumours characteristically show calcification,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846213/ https://www.ncbi.nlm.nih.gov/pubmed/26849038 http://dx.doi.org/10.1259/bjr.20150857 |
Sumario: | Oligodendroglioma are glial tumours, predominantly occurring in adults. Their hallmark molecular feature is codeletion of the 1p and 19q chromosome arms, which is not only of diagnostic but also of prognostic and predictive relevance. On imaging, these tumours characteristically show calcification, and they have a cortical–subcortical location, most commonly in the frontal lobe. Owing to their superficial location, there may be focal thinning or remodelling of the overlying skull. In contrast to other low-grade gliomas, minimal to moderate enhancement is commonly seen and perfusion may be moderately increased. This complicates differentiation from high-grade, anaplastic oligodendroglioma, in which enhancement and increased perfusion are also common. New enhancement in a previously non-enhancing, untreated tumour, however, is suggestive of malignant transformation, as is high growth rate. MR spectroscopy may further aid in the differentiation between low- and high-grade oligodendroglioma. A relatively common feature of recurrent disease is leptomeningeal dissemination, but extraneural spread is rare. Tumours with the 1p/19q codeletion more commonly show heterogeneous signal intensity, particularly on T(2) weighted imaging; calcifications; an indistinct margin; and mildly increased perfusion and metabolism than 1p/19q intact tumours. For the initial diagnosis of oligodendroglioma, MRI and CT are complementary; MRI is superior to CT in assessing tumour extent and cortical involvement, whereas CT is most sensitive to calcification. Advanced and functional imaging techniques may aid in grading and assessing the molecular genotype as well as in differentiating between tumour recurrence and radiation necrosis, but so far no unequivocal method or combination of methods is available. |
---|